This test consists of eleven (11) pages, including this cover page. Be sure your copy is complete before beginning your work. If this test packet is defective, ask for another one.

A separate copy of the periodic table will be provided with this test. Any necessary constants will be given along with the question to which they pertain.

DO NOT WRITE BELOW THIS LINE

DISCLAIMER

This is a copy of a typical final exam in Chem 103. Your test will be different. This test is being posted to give you a sense of the format, style, scope, and level of a typical test on this material. This test may have questions on topics that will not be covered on the test you take. Moreover, your test may have questions on topics that are not covered on this test. Posting this test in no way limits the format, style, scope, or level of the test that you will take. Do not limit your preparation to the material on this sample test.
1. (90 points; 3 points each) Circle the correct answer to each of the following. In cases where numerical answers are required, select the answer closest to the one you calculate, making allowance for differences in rounding, etc.

a. Law of Constant Composition (also called Law of Definite Proportions)
 Davy Dalton Lavoisier Proust Bohr

b. Wave equation for freely moving electrons and other particles
 deBroglie Einstein Schrödinger Bohr Balmer

c. Calculated the charge to mass ratio for the electron
 Rutherford Thomson Planck Wein Bohr

d. The I.U.P.A.C. name for Fe₂(SO₄)₃
 diferric trisulfate iron(II) sulfate iron(III) sulfate ferric sulfate iron(II) sulfite

e. In water, this compound is properly called hydrosulfuric acid
 H₂SO₄ H₂SO₃ H₂S S₈ SO₃

f. If the isotope of nickel (Z = 28) whose mass number (A) is 58 forms a Ni²⁺ ion, the ion has the following composition of protons (p), neutrons (n), and electrons (e):
 28p, 58n, 26e 28p, 58n, 30e 28p, 30n, 28e
 28p, 30n, 26e 28p, 30n, 30e

g. Is a strong electrolyte in water
 Hg₂Cl₂ CH₃CO₂H SiO₂ HNO₂ C₁₂H₂₂O₁₁

h. What is the energy in Joules of a photon whose wavelength is 525 nm? (h = 6.64 x 10⁻³⁴ J·s; c = 3.00 x 10⁸ m·s⁻¹)
 3.79 x 10⁻¹⁹ J 1.99 x 10⁻²⁵ J 1.26 x 10⁻²⁷ J 3.79 x 10⁻²⁸ J 1.05 x 10⁻³¹ J
i. Complete and balance the following skeletal equation with *lowest whole number coefficients*:

\[
C_6H_5CO_2H(l) + O_2(g) \rightarrow 6 CO_2(g) + H_2O(l)
\]

The coefficient for \(O_2(g)\) is

17 15 30 34 7

j. Consider the following Lewis model.

Which of the following best describes the size of the angle marked \(\alpha\)?

- \(~90^\circ\)
- \(~109.5^\circ\)
- \(~120^\circ\)
- \(~180^\circ\)
- exactly \(180^\circ\)

k. Which molecule or ion among the following has a *delocalized* \(\pi\) system (only central atom electrons shown)?

l. Judging from trends in electronegativity, which one of the following bonds is *most* polar

- Sn-Cl
- C-N
- N-N
- S-O
- S-Br

m. Consider :N/ N:, diatomic nitrogen. In terms of valence bond theory, the nitrogen-nitrogen bond could be described as

- \(\sigma\) only
- \(\pi\) only
- \(\sigma + \pi\)
- \(\sigma + \pi + \pi\)
- ionic

n. Among the following, the species that has a positive value of electron affinity, \(A\), for acquiring one additional electron

- Cl
- O
- C
- N
- I–
o. Among the following, which result definitely has two significant figures?

\[
\begin{align*}
7.51 + 5.6 & \quad 98.3 - 96.37 & \quad 54.6/6.00 & \quad 12.5 \times 4 & \quad 500/25
\end{align*}
\]

p. The following indicate transitions between two \(n \) states of the hydrogen atom. Which one would result in emission of visible light?

\[
\begin{align*}
261 & \quad 465 & \quad 362 & \quad 463 & \quad 164
\end{align*}
\]

q. Of the following, the electromagnetic radiation with the highest energy is

- infrared
- visible
- radio
- ultraviolet
- gamma rays

r. Among the following, the only one with a fully filled 4\(f \) subshell

- \(^{40}\text{Zr} \)
- \(^{54}\text{Xe} \)
- \(^{57}\text{La} \)
- \(^{72}\text{Hf} \)
- \(^{50}\text{Sn} \)

s. How many milliliters of 0.100 M NaOH(\(aq \)) are required for complete neutralization of 25.0 mL of 0.120M H\(_2\)SO\(_4\), a diprotic acid?

\[
\begin{align*}
3.00 \text{ mL} & \quad 30.0 \text{ mL} & \quad 6.00 \text{ mL} & \quad 60.0 \text{ mL} & \quad 15.0 \text{ mL}
\end{align*}
\]

t. The specific heat of copper is 0.385 J/°C·g. How much heat is liberated when a 1.94-g block of copper is cooled from 35.0 °C to 20.0 °C?

\[
\begin{align*}
29.1 \text{ J} & \quad 11.2 \text{ J} & \quad 5.78 \text{ J} & \quad 2.98 \text{ J} & \quad 0.747 \text{ J}
\end{align*}
\]

u. Which of the following ions does not have a noble gas configuration?

- \(^{13}\text{Al}^{3+} \)
- \(^{53}\text{I}^- \)
- \(^{34}\text{Se}^{2-} \)
- \(^{38}\text{Sr}^{2+} \)
- \(^{31}\text{Ga}^{3+} \)

v. If treated with HCl(\(aq \)), which one of the following solutions would give no metathetical reaction?

- \((\text{NH}_4)_2\text{CO}_3(aq) \)
- \(\text{PbNO}_3(aq) \)
- \(\text{KOH}(aq) \)
- \(\text{NaNO}_3(aq) \)
- \(\text{Na}_2\text{SO}_3(aq) \)

w. Which one of the following solutions contains the highest concentration of nitrate ion?

\[
\begin{align*}
0.10 \text{ M Al}(\text{NO}_3)_3 & \quad 0.25 \text{ M KNO}_3 & \quad 0.12 \text{ M Ca}(\text{NO}_3)_2 \\
0.12 \text{ M NH}_4\text{NO}_3 + 0.12 \text{ M Pb}(\text{NO}_3)_2 & \quad 0.050 \text{ M Fe}(\text{NO}_3)_3 + 0.12 \text{ M NaNO}_3
\end{align*}
\]
x. \(2\text{Na}(s) + 3\text{N}_2(g) \rightarrow 2\text{NaN}_3(s)\) is an example of which one of the following types of reaction?

- metathesis
- combination
- decomposition
- combustion
- double displacement

y. Which one of the following would best be described as ionic?

- \(\text{LiF}(s)\)
- \(\text{HF}(g)\)
- \(\text{CO}(g)\)
- \(\text{I}_2(s)\)
- \(\text{SiO}_2(s)\)

z. Which of the following sketches of orbitals on two adjacent atoms represents formation of a \(\pi\) bond?

![Sketches of orbitals]

aa. The quantum number most closely identified with the orientation of an orbital is

- \(n\)
- \(l\)
- \(m_l\)
- \(m_s\)
- \(k\)

bb. Of the following, the one that probably has the lowest lattice energy is

- \(\text{LiCl}\)
- \(\text{Al}_2\text{O}_3\)
- \(\text{MgF}_2\)
- \(\text{RbI}\)
- \(\text{CaO}\)

cc. Which of the following is largest?

- \(\text{O}^{2-}\)
- \(\text{S}^{2-}\)
- \(\text{Ar}\)
- \(\text{Na}^+\)
- \(\text{Al}^{3+}\)

dd. Which of the following sketches represents a set of \(sp^3\) hybrids?

![Sketches of orbitals]
2. (10 points; 5 points each) Use your knowledge of weak electrolytes, gas-forming reactions, and insoluble compounds to write balanced net ionic equations for each of the following, using lowest whole-number coefficients. Be sure to write any weak electrolytes or insoluble compounds in “molecular” form.

 a. \((NH_4)_2SO_4(aq) + Ba(NO_3)_2(aq)\)

 b. \(Na_2CO_3(aq) + CH_3CO_2H(aq)\)

3. (8 points; 4 points each) Give the complete electronic configuration (using the usual spectroscopic notation; i.e., \(1s^22s^2\)) for the following:

 \(\text{Se}^{2-}\) __________________________

 \(\text{Fe}^{2+}\) __________________________
4. (12 points) The following is the principal resonance form of the thiocyanate ion:

\[
\text{\textcircled{S}C=N}^-
\]

Draw Lewis structures for the two lesser contributing resonance forms (6 points), assign formal charges for each form (3 points), and name the hybrid orbitals on the carbon atom in the space below (3 points).

The hybrid orbitals on the carbon atom are ______.

5. (12 points) A certain hydrocarbon with a molecular weight of 56.10 u consists of 85.63% C and 14.37% H. What is its molecular formula? Show work to justify your answer.
6. (36 points; 12 points each) For each of the following molecules or ions draw a Lewis dot diagram (5 points), draw and name the shape (3 + 2 points), and indicate whether the species is polar or nonpolar (2 points).

a. H_3O^+

 [Lewis model] | [Shape drawing]

 (name of shape) | (polar?)

b. PCl_4^-

 [Lewis model] | [Shape drawing]

 (name of shape) | (polar?)
c. \(\text{Cl}_2\text{CO} \)

[Lewis model] [Shape drawing]

(name of shape) (polar?)
7. (16 points) Calculate the standard enthalpy of formation of Ca(OH)$_2$(s), given the following data:

\[
\begin{align*}
2 \text{Ca(s)} + \text{O}_2(g) & \rightarrow 2 \text{CaO(s)} \quad \Delta H^\circ = -1271.0 \text{ kJ} \\
\text{Ca(OH)}_2(s) & \rightarrow \text{CaO(s)} + \text{H}_2\text{O(l)} \quad \Delta H^\circ = +64.9 \text{ kJ} \\
2 \text{H}_2(g) + \text{O}_2(g) & \rightarrow 2 \text{H}_2\text{O(l)} \quad \Delta H^\circ = -571.7 \text{ kJ}
\end{align*}
\]
8. (16 points) Consider the following reaction

$$2\text{H}_3\text{PO}_4(aq) + 3\text{Ca(OH)}_2(s) \rightarrow 6 \text{Ca}_3\text{(PO}_4)_2(s) + 6\text{H}_2\text{O(l)}$$

How many grams of $\text{Ca}_3(\text{PO}_4)_2(s)$ (f.w. = 310.18 u) should be produced when a 1.74-g sample of $\text{Ca(OH)}_2(s)$ (f.w. = 74.09 u) is treated with 64.0 mL of 0.250 M $\text{H}_3\text{PO}_4(aq)$ solution? Your work must show an explicit determination of the limiting reagent.