Types of Compounds

Compounds generally are one of three types:

Molecular compounds – composed of discrete molecules consisting of certain numbers of atoms (e.g., H_2 , H_2O).

lonic compounds – composed of electrically neutral numbers of cations (positive ions) and anions (negative ions), but containing no molecules of the compound (e.g., NaCI).

Network solids – composed of infinitely connected neutral atoms in a three-dimensional array, but not containing any discrete molecules (e.g., diamond, SiO_2 – quartz).

Types of Formulas

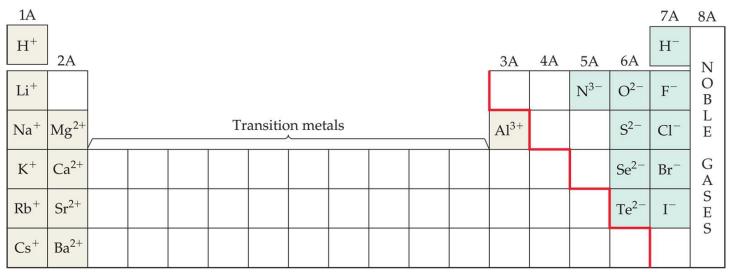
- Molecular formulas give the exact numbers of atoms of each element in a molecule of a compound.
- Empirical formulas give the lowest whole-number ratio of atoms of each element in a compound.
- Example: H_2O_2 = molecular formula, HO = empirical formula

Types of Formulas

Structural formula

Perspective drawing

Ball-and-stick model



Space-filling model

- Structural formulas show the order in which atoms are bonded.
- Perspective drawings also show the three-dimensional array of atoms in a compound.

lons

- When atoms lose or gain electrons, they become ions.
 - Cations are positive and are generally formed by metals
 - > Anions are negative and are formed by nonmetals

"Real Charges" on lons

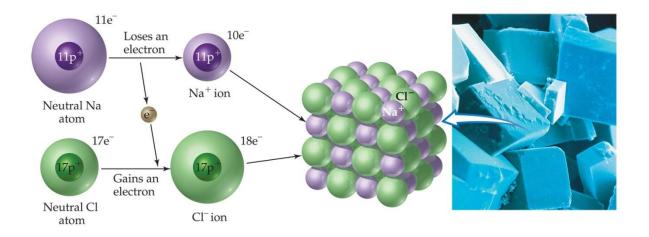
- Ions can have only 1, 2 or 3 charges.
- Higher charges that might be assigned are only a formalism (called *oxidation state*).
- Oxidation states greater than +3 or -3 are not real and occur only in molecular compounds.

Polyatomic ions

- The ions that contain more than one atom are called polyatomic ions
- These can be cations or anions
 NH₄⁺, CO₃²⁻
- Within the polyatomic ion the elements are covalently linked. But they have an overall charge.

 Polyatomic cations: NH₄+, H₃O+ and Hg₂²⁺
 Anions are many

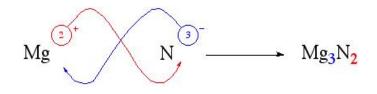
In most chemical reactions the polyatomic ions will move as a whole.


_____ form ions with a 2⁺ charge when they react with nonmetals.

- A) Alkali metals
- B) Alkaline earth metals
- C) Halogens
- D) Noble gases
- E) None of these choices

Ionic Bonds

Binary (two element) ionic compounds (such as NaCl) are generally formed between metals and nonmetals.



- All ionic compounds are crystalline solids with a very orderly crystal lattice and have high melting points.
- They are made of electrically equivalent
 number of cations and anions
- They are referred to with their formula units which is the empirical formula of the compound

Writing Formulas of Ionic Compounds

- Because ionic compounds are electrically neutral, one can determine the formula of a compound this way:
 - The charge on the cation becomes the subscript on the anion.
 - The charge on the anion becomes the subscript on the cation.
 - If these subscripts are not in the lowest wholenumber ratio, divide them by the greatest common factor.

lons

Common Cations

Charge	Formula	Name	Formula	Name
1+	H ⁺ Li ⁺ Na ⁺ K ⁺ Cs ⁺ Ag ⁺	Hydrogen ion Lithium ion Sodium ion Potassium ion Cesium ion Silver ion	NH4 ⁺ Cu ⁺	Ammonium ion Copper(I) or cuprous ion
2+	Mg ²⁺ Ca ²⁺ Sr ²⁺ Ba ²⁺ Zn ²⁺ Cd ²⁺	Magnesium ion Calcium ion Strontium ion Barium ion Zinc ion Cadmium ion	$Co^{2+} Cu^{2+} Fe^{2+} Mn^{2+} Hg_2^{2+} Hg^{2+} Ni^{2+} Pb^{2+} Sn^{2+} $	Cobalt(II) or cobaltous ion Copper(II) or cupric ion Iron(II) or ferrous ion Manganese(II) or manganous ion Mercury(I) or mercurous ion Mercury(II) or mercuric ion Nickel(II) or nickelous ion Lead(II) or plumbous ion Tin(II) or stannous ion
3+	A1 ³⁺	Aluminum ion	Cr ³⁺ Fe³⁺	Chromium(III) or chromic ion Iron(III) or ferric ion

*The most common ions are in boldface.

Common Anions

Charge	Formula	Name	Formula	Name
1-	H ⁻ F ⁻ Cl ⁻ Br ⁻ I ⁻ CN ⁻ OH ⁻	Hydride ion Fluoride ion Chloride ion Bromide ion Iodide ion Cyanide ion Hydroxide ion	$C_{2}H_{3}O_{2}^{-}$ ClO_{3}^{-} ClO_{4}^{-} NO_{3}^{-} MnO_{4}^{-}	Acetate ion Chlorate ion Perchlorate ion Nitrate ion Permanganate ion
2-	O^{2-} O_2^{2-} S^{2-}	Oxide ion Peroxide ion Sulfide ion	$ \begin{array}{c} \text{CO}_{3}^{2-} \\ \text{CrO}_{4}^{2-} \\ \text{Cr}_{2}\text{O}_{7}^{2-} \\ \text{SO}_{4}^{2-} \end{array} $	Carbonate ion Chromate ion Dichromate ion Sulfate ion
3-	N ³⁻	Nitride ion	PO ₄ ³⁻	Phosphate ion

*The most common ions are in boldface.

Inorganic Nomenclature IUPAC system

- Simple ionic compounds are named by the following rules.
- Write the name of the cation first. If a monatomic cation, use its element name (e.g., Ca²⁺ = calcium). If polyatomic, use its usual name (e.g., NH₄⁺ = ammonium).
- If the anion is an element, change its ending to -ide (e.g., $Cl^{-} =$ chloride). If the anion is a polyatomic ion, simply write its usual name (e.g., $NO_{3}^{-} =$ nitrate).

- If the cation can have more than one possible charge, write the charge as a Roman numeral in parentheses.
- This happens in the case of transition metals and some heavier main group elements
- For example:
- Cu⁺ and Cu²⁺ are copper (I) and copper (II)
- Fe²⁺ and Fe³⁺ are iron (II) and iron(III)
- Some more examples:
- Co²⁺ and Co³⁺
- Cr²⁺ and Cr³⁺

Zn and Ag make only Zn²⁺ and Ag⁺ so their charge does not need to be specified.

When to Use or Not Use Roman Numerals

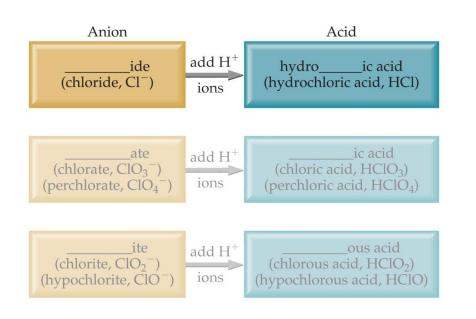
- FeCl₃ is iron (III) chloride
- CaCl₂ on the other hand is calcium chloride not calcium (II) chloride as calcium is a main group metal and forms only one cation - Ca²⁺.

You do not specify its charge.

Patterns in Oxyanion Nomenclature

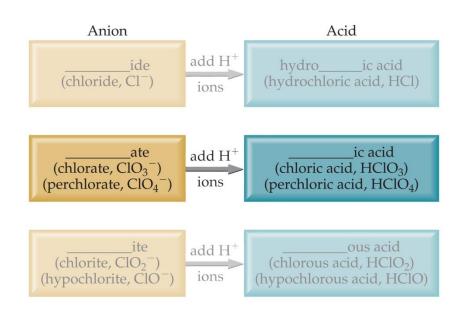
- When there are two oxyanions involving the same element:
 - ➤The one with fewer oxygens ends in -ite
 - NO₂⁻: nitrite; SO₃²⁻: sulfite
 - ➤The one with more oxygens ends in -ate
 - NO_3^- : nitrate; SO_4^{2-} : sulfate

CIO^{-} : hypochlorite CIO_{2}^{-} : chlor*ite* CIO_{3}^{-} : chlor*ate* CIO_{4}^{-} : perchlorate

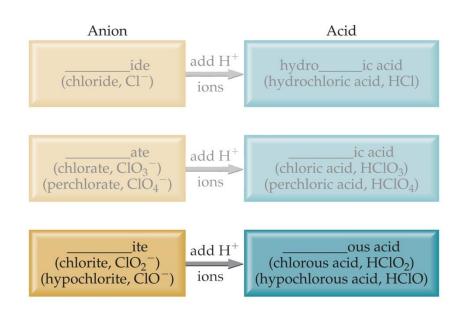

Anions derived by adding H⁺ to the oxy anion:

- CO₃²⁻ and HCO₃⁻
 Carbonate and hydrogen carbonate
- PO_4^{3-} , $H_2PO_4^{-}$

Phosphate and *dihydrogen* phosphate


Acid Nomenclature

- If the anion in the acid ends in -*ide*, change the ending to -*ic acid* and add the prefix *hydro*- :
 - HCI: hydrochloric acid
 - HBr: hydrobromic acid
 - ➤ HI: hydroiodic acid


Acid Nomenclature

 If the anion in the acid ends in -*ate*, change the ending to -*ic acid*:
 ≻ HCIO₃: chloric acid
 ≻ HCIO₄: perchloric acid

Acid Nomenclature

- If the anion in the acid ends in -*ite*, change the ending to -*ous acid*:
 HCIO: hypochlorous
 - HCIO: hypochlorous acid
 - > HClO₂: chlorous acid

TABLE 4.2 Common Strong Acids and BasesStrong AcidsStrong BasesHydrochloric, HClGroup 1A metal hydroxides (LiOH, NaOH, KOH, RbOH, CsOH)Hydrobromic, HBrHeavy group 2A metal hydroxides [Ca(OH)2, Sr(OH)2, Ba(OH)2]Hydroiodic, HIChloric, HClO3Perchloric, HClO4Yate (Strong Base)Nitric, HNO3Sulfuric, H2SO4

Copyright © 2006 Pearson Prentice Hall, Inc.

Other than this you need to know the names and formulas of: Acetic acid, CH_3COOH Phosphoric acid, H_3PO_4 Sulfurous acid H_2SO_3 Hydrosulfuric acid H_2S Carbonic acid H_2CO_3 Chlorous acid $HCIO_2$ Hypochlorous acid HCIOfor now

When a metal and a nonmetal react, the ______ tends to lose electrons and the _____

tends to gain electrons.

A) metal, nonmetal

- B) nonmetal, metal
- C) nonmetal, nonmetal
- D) metal, metal
- E) None of the above, these elements share electrons.

Give the IUPAC names of the following:

- NH₄Br
- Cr_2O_3
- $ZnSO_{4}$
- Ag_2SO_4
- K_2CrO_4

- Ammonium bromide
- Chromium (III) oxide
- $Co(NO_3)_2$ Cobalt (II) nitrate
 - Zinc Sulfate
 - Silver sulfate
 - Potassium chromate

Covalent or Molecular Compounds

- Covalent compounds are formed between two nonmetals.
- In covalent compounds the elements share electrons.
- These are true molecules
- Covalent compounds can be solids, liquids or gases at room temperature.

Nomenclature of Covalent Compounds

Prefix	Meaning	
Mono-	1	
Di-	2	
Tri-	3	
Tetra-	4	
Penta-	5	
Hexa-	6	
Hepta-	7	
Octa-	8	
Nona-	9	
Deca-	10	

- The less electronegative atom is usually listed first.
- A prefix is used to denote the number of atoms of each element in the compound (*mono*- is not used on the first element listed, Atoms, however.)

Nomenclature of Covalent Compounds

Prefix	Meaning
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

• The ending on the more electronegative element is changed to -*ide*.

CO₂: carbon dioxide
 CCl₄: carbon tetrachloride

Nomenclature of Covalent Compounds

Prefix	Meaning
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

If the prefix ends with *a* or *o* and the name of the element begins with a vowel, the two successive vowels are often elided into one:

N₂O₅: dinitrogen pentoxide

- XeO₃
- Dinitrogen tetroxide
- Hydrogen cyanide

- Xenon trioxide
- N₂O₄
- HCN

The correct name for N₂O₅ is _____ A) nitric oxide B) nitrogen pentoxide C) nitrogen oxide

- D) nitrous oxide
- E) dinitrogen pentoxide

The correct name for CaH₂ is

A) calcium hydrideB) hydrocalciumC) calcium dihydrideD) Cacium (II) hydride

- Some compounds are still known by their common names
- H_2O water
- NH₃ ammonia
- H₂O₂ -hydrogen peroxide
- H₂S hydrogen sulfide
- CH₄ methane
- C_2H_6 ethane
- CH₃OH methanol
- C₂H₅OH ethanol

