Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

# Chapter 1 Introduction: Matter and Measurement



# Chemistry:



The study of matter and the changes it undergoes.



### Scientific Method:

A systematic approach to solving problems.





### Matter:

Anything that has mass and takes up











## Matter



Atoms are the building blocks of matter.



### Matter



- Atoms are the building blocks of matter.
- Each element is made of the same kind of atom.



#### Matter



- Atoms are the building blocks of matter.
- Each element is made of the same kind of atom.
- A compound is made of two or more different kinds of elements.

Measurement

### States of Matter













































# Mixtures and Compounds









# Properties and Changes of Matter



# Properties of Matter

- Physical Properties:
  - Can be observed without changing a substance into another substance.
    - Boiling point, density, mass, volume, etc.
- Chemical Properties:
  - Can only be observed when a substance is changed into another substance.
    - Flammability, corrosiveness, reactivity with acid, etc.



# Properties of Matter

- Intensive Properties:
  - Independent of the amount of the substance that is present.
    - Density, boiling point, color, etc.
- Extensive Properties:
  - Dependent upon the amount of the substance present.
    - Mass, volume, energy, etc.



# Changes of Matter

- Physical Changes:
  - Changes in matter that do not change the composition of a substance.
    - Changes of state, temperature, volume, etc.
- Chemical Changes:
  - □ Changes that result in new substances.
    - Combustion, oxidation, decomposition, etc.



# **Chemical Reactions**



In the course of a chemical reaction, the reacting substances are converted to new substances.



# **Chemical Reactions**





# Compounds

Compounds can be broken down into more elemental particles.





# Electrolysis of Water





# Separation of Mixtures



### Distillation:



Separates
homogeneous
mixture on the basis
of differences in
boiling point.



# Distillation





## Filtration:





Separates solid substances from liquids and solutions.



# Chromatography:

Separates substances on the basis of differences in solubility in a solvent.









# Units of Measurement



### SI Units

| Physical Quantity   | Name of Unit | Abbreviation |
|---------------------|--------------|--------------|
| Mass                | Kilogram     | kg           |
| Length              | Meter        | m            |
| Time                | Second       | $s^a$        |
| Temperature         | Kelvin       | K            |
| Amount of substance | Mole         | mol          |
| Electric current    | Ampere       | A            |
| Luminous intensity  | Candela      | cd           |

<sup>&</sup>lt;sup>a</sup>The abbreviation sec is frequently used.

- Système International d'Unités
- Uses a different base unit for each quantity



# Metric System

# Prefixes convert the base units into units that are appropriate for the item being measured.

| Prefix                                                  | Abbreviation                          | Meaning                                                                                                                           | Example                                                                                                                                                                                                                                                               |
|---------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Giga<br>Mega<br>Kilo<br>Deci<br>Centi<br>Milli<br>Micro | G<br>M<br>k<br>d<br>c<br>m<br>$\mu^a$ | $   \begin{array}{c}     10^9 \\     10^6 \\     10^3 \\     10^{-1} \\     10^{-2} \\     10^{-3} \\     10^{-6}   \end{array} $ | 1 gigameter (Gm) = $1 \times 10^9$ m<br>1 megameter (Mm) = $1 \times 10^6$ m<br>1 kilometer (km) = $1 \times 10^3$ m<br>1 decimeter (dm) = $0.1$ m<br>1 centimeter (cm) = $0.01$ m<br>1 millimeter (mm) = $0.001$ m<br>1 micrometer ( $\mu$ m) = $1 \times 10^{-6}$ m |
| Nano                                                    | n                                     | $10^{-9}$                                                                                                                         | 1 nanometer (nm) = $1 \times 10^{-9}$ m                                                                                                                                                                                                                               |
| Pico                                                    | 9221                                  | $10^{-12}$                                                                                                                        | 1 picometer (pm) = $1 \times 10^{-12}$ m                                                                                                                                                                                                                              |
|                                                         | p                                     |                                                                                                                                   |                                                                                                                                                                                                                                                                       |
| Femto                                                   | İ                                     | $10^{-15}$                                                                                                                        | 1 femtometer (fm) = $1 \times 10^{-15}$ m                                                                                                                                                                                                                             |

<sup>&</sup>lt;sup>a</sup>This is the Greek letter mu (pronounced "mew").



 Write down an unusual example of a chemical reaction on a piece of paper and give it to me with your name.



- What is the most abundant element on earth?
- What is the most abundant element in the human body?



#### Volume

- The most commonly used metric units for volume are the liter (L) and the milliliter (mL).
  - A liter is a cube 1 dm long on each side.
  - A milliliter is a cube 1 cm long on each side.





1L = 1000 ml



#### **Conversions of units**

#### <u>Length</u>

```
1 \text{ km} = 1000 \text{ meter}
```

1 meter = 100 cm

1 cm = 10 mm

#### <u>Mass</u>

```
1 \text{ kg} = 1000 \text{ g}
```

1 g = 1000 mg

#### **Volume**

```
1 L = 1000 ml
```



#### Temperature:



A measure of the average kinetic energy of the particles in a sample.



## **Temperature**



- In scientific measurements, the Celsius and Kelvin scales are most often used.
- The Celsius scale is based on the properties of water.
  - 0°C is the freezing point of water.

And Measurement

□ 100°C is the boiling point of water.

#### Temperature



- The Kelvin is the SI unit of temperature.
- It is based on the properties of gases.
- There are no negative Kelvin temperatures.
- $K = {}^{\circ}C + 273.15$



### Temperature



 The Fahrenheit scale is not used in scientific measurements.

• 
$$^{\circ}F = 9/5(^{\circ}C) + 32$$

• 
$$^{\circ}$$
C = 5/9( $^{\circ}$ F - 32)



$$^{\circ}F = 9/5(^{\circ}C) + 32$$



$$^{\circ}F = 9/5(^{\circ}C) + 32$$



$$^{\circ}F = 9/5(^{\circ}C) + 32$$



# Uncertainty in Measurement



## Uncertainty in Measurements

Different measuring devices have different uses and different degrees of accuracy.







# Significant Figures

- The term significant figures refers to digits that were measured.
- When rounding calculated numbers, we pay attention to significant figures so we do not overstate the accuracy of our answers.



# Significant Figures

- 1. All nonzero digits are significant.
- 2. Zeroes between two significant figures are themselves significant.
- 3. Zeroes at the beginning of a number are never significant.
- 4. Zeroes at the end of a number are significant if a decimal point is written in the number.

#### **Exact numbers**

 These numbers are the ones whose values are known exactly.

Counted numbers and

Conversion factors within a system

Eg 1 km = 1000 m



Relationships between units in *different* unit systems are *usually* not exact:

2.2 lb. = 1.0 kg 2 sig. figs.

2.2046223 lb. = 1.0000000 kg 8 sig. figs.

But the following inter-system conversion factors are now set by definition and are **exact**:

2.54 cm / 1 inch (exactly)

1 calorie / 4.184 Joules (exactly)



#### **Exact Numbers**

 The numbers that are obtained by counting and not by measuring are called exact numbers.

Examples: 10 apples, 100 students

Exact numbers also arise by definition

Example: 1 inch is defined as exactly

2.54 cm.



- Exact numbers can be assumed to have an unlimited number of significant figures.
- These do not limit the number of significant figures in a calculation.



# Rules for Multiplication and Division

 When multiplying or dividing numbers, the answer reported can not have more significant figures than either of the original numbers.







# Rules for Addition and Subtraction

When adding or subtracting numbers, the reported answer can not have more digits after the decimal point than any of the added numbers.



lume of water at start  $\longrightarrow$  3.18? ?? L  $\longrightarrow$  Two digits after decimal p ume of water addded  $\longrightarrow$  + 0.013 15 L  $\longrightarrow$  Five digits after decimal p Total volume of water  $\longrightarrow$  3.19? ?? L  $\longrightarrow$  Two digits after decimal p

#### Accuracy versus Precision

- Accuracy refers to the proximity of a measurement to the true value of a quantity.
- Precision refers to the proximity of several measurements to each other.



Good accuracy Good precision



Poor accuracy Good precision



Poor precision



### **Dimensional Analysis**

 This is a very powerful tool for conversion from one unit to another.



 Those of you who were present in today morning's discussion, please sign the attendance sheet.



#### <u>Dimensional Analysis</u>

- Step 1: write the conversion factors
- Step 2: write down two equivalence ratios
- Step 3: write the number to be converted with the unit
- Step 4: multiply that with the equivalence ratio so that the unit needed in the answer is on the top and the unit that needs to go is on the bottom
- Step 5: Calculate the answer

Check to see if your answer makes sense



# Examples

Convert 37 Km/h to m/s

$$37\frac{\text{Km}}{\text{h}} \times \frac{1000\text{m}}{1\text{Km}} \times \frac{1\text{h}}{60\text{min}} \times \frac{1\text{min}}{60\text{s}}$$



Convert 12 g / L to g/ml



#### **Density:**

Physical property of a substance

It gives the mass of the substance per unit volume

Density is temperature dependent

The density of water is 1.0 g/ mL at 25°C

Any substance that is less dense than water - will float on water

Any substance that is more dense than water - will sink in water



#### Density:

Physical property of a substance

$$d=\frac{m}{V}$$

