| Test 4 | 4 |
|--------|---|
|--------|---|

Name\_\_\_\_\_

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

| 1) Which of the sub-<br>number?<br>A) 4f<br>B) 4p<br>C) 4s<br>D) 4d<br>E) <u>none of the</u>                                                                                                    | shells below do <u>not e</u> s<br><u>above</u>                              | kist due to the constra                          | aints upon the azimu       | thal quantum         | 1) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------|----------------------------|----------------------|----|
| 2) Which set of three                                                                                                                                                                           | e quantum numbers (                                                         | n, I, m <sub>l</sub> ) corresponds               | to a 3d orbital?           |                      | 2) |
| A) 2, 3, 3                                                                                                                                                                                      | B) <u>3, 2, 2</u>                                                           | C) 2, 1, 0                                       | D) 3, 2, 3                 | E) 3, 3, 2           |    |
| 3) At maximum, an electrons, and a p                                                                                                                                                            | f-subshell can hold _<br>-subshell can hold                                 | electrons,<br>electrons.                         | a d-subshell can hol       | ld                   | 3) |
| A) 14, 8, 2                                                                                                                                                                                     | B) 2, 8, 18                                                                 | C) <u>14, 10, 6</u>                              | D) 2, 6, 10                | E) 2, 12, 21         |    |
| <ul> <li>4) Which one of the atom? (arranged</li> <li>A) 5, 4,- 5, 1/2</li> <li>B) 2, 2, -1, -1/2</li> <li>C) <u>1, 0, 0, 1/2</u></li> <li>D) 3, 3, 3, 1/2</li> <li>E) 3, 3, 3, -1/2</li> </ul> | following represents<br>as n, l, m <sub>l</sub> , and m <sub>S</sub> )<br>2 | an acceptable set of d                           | quantum numbers fo         | r an electron in an  | 4) |
| 5) The valence shell<br>has a partially fill<br>A) alkali metal<br>B) main group<br>C) halogen<br>D) chalcogen<br>E) <u>transition n</u>                                                        | of the element X con<br>led 4d subshell. Wha<br>element<br><u>netal</u>     | tains 2 electrons in a<br>t type of element is X | 5s subshell. Below th<br>? | nat shell, element X | 5) |
| 6) In which set of el<br>A) Na, Mg, K<br>B) <u>O, S, Se</u><br>C) S, Se, Si<br>D) Ne, Na, Mg                                                                                                    | ements would all me                                                         | mbers be expected to                             | have very similar ch       | emical properties?   | 6) |

E) N, O, F

7) Which electron configuration represents a violation of the Pauli exclusion principle?



8) Screening of the nuclear charge by core electrons in atoms is \_\_\_\_\_.

A) responsible for a general decrease in atomic radius going down a group

- B) less efficient than that by valence electrons
- C) more efficient than that by valence electrons
- D) essentially identical to that by valence electrons
- E) <u>both</u> essentially identical to that by valence electrons <u>and</u> responsible for a general decrease in atomic radius going down a group
- 9) Which isoelectronic series is correctly arranged in order of increasing radius?
  - A)  $K^+ < Ca^{2+} < Ar < Cl^-$ B)  $Ca^{2+} < K^+ < Cl^- < Ar$ C)  $Ca^{2+} < Ar < K^+ < Cl^-$ D)  $\underline{Ca^{2+}} < K^+ < Ar < Cl^-$ E)  $Cl^- < Ar < K^+ < Ca^{2+}$

10) Which equation correctly represents the first ionization of aluminum?

A) AI (g) 
$$+ e^{-} \rightarrow AI^{-}$$
 (g)  
B) AI<sup>+</sup> (g)  $+ e^{-} \rightarrow AI$  (g)  
C) AI (g)  $\rightarrow AI^{\pm}(g) + e^{-}$   
D) AI (g)  $\rightarrow AI^{-}(g) + e^{-}$   
E) AI<sup>-</sup> (g)  $\rightarrow AI$  (g)  $+ e^{-}$ 

10) \_\_\_\_\_

8)

9)

Consider the following electron configurations to answer the questions that follow:

| ·                                                                                                              | guration belonging   | to the atom with the  | nignest second ionia                     | zation energy is     | 11)      |
|----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|------------------------------------------|----------------------|----------|
| A) <u>(i)</u>                                                                                                  | B) (ii)              | C) (iii)              | D) (iv)                                  | E) (v)               |          |
| 12) Which is the corre                                                                                         | ct ground-state ele  | ctron configuration f | or silver                                | ?                    | 12)      |
| A) <u>[Kr]5s14d10</u>                                                                                          |                      |                       |                                          |                      |          |
| B) [Xe]5s <sup>2</sup> 4d <sup>9</sup>                                                                         |                      |                       |                                          |                      |          |
| C) [Xe]5s14d10                                                                                                 |                      |                       |                                          |                      |          |
| D) $[Kr]5524010$                                                                                               |                      |                       |                                          |                      |          |
| E) [Kr]552407                                                                                                  |                      |                       |                                          |                      |          |
| 13) Which one of the f<br>water?                                                                               | following compour    | ids would produce a   | n acidic solution whe                    | n dissolved in       | 13)      |
| A) MgO                                                                                                         | В) <u>СО2</u>        | C) CaO                | D) SrO                                   | E) Na <sub>2</sub> O |          |
| 14) This element is more reactive than lithium and magnesium but less reactive than potassium. This element is |                      |                       |                                          |                      |          |
| A) Be                                                                                                          | B) Ca                | C) RD                 | D) <u>INA</u>                            | E) FI                |          |
| 15) The reaction of alk                                                                                        | cali metals with oxy | /gen produce          |                                          |                      | 15)      |
| A) peroxides                                                                                                   |                      |                       |                                          |                      |          |
| C) superoxides                                                                                                 |                      |                       |                                          |                      |          |
| D) <u>all of the ab</u>                                                                                        | ove                  |                       |                                          |                      |          |
| E) none of the a                                                                                               | above                |                       |                                          |                      |          |
| (6) Flomont M roacto                                                                                           | with oxygen to forr  | n an oxide with the f | ormula MO. When N                        | NO is dissolved in   | 16)      |
| IU) ETERTERILIVITEACIS                                                                                         | g solution is basic. | Element M could be    | ·                                        |                      | <i>.</i> |
| water, the resultin                                                                                            | 0                    |                       |                                          | E) C                 |          |
| water, the resultin                                                                                            | B) Ba                | C) C                  | 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/ | 1 / 1                |          |

## CHOOSE YOUR ANSWER. I DO NOT HAVE THE ORBITAL DIAGRAM HERE

Be has a stable closed subshell configuration, which is disrupted by losing an electron. By contrast, E can achieve a fully-filled subshell configuration by losing the lone electron in the 2p subshell. This makes ionization of Be a little higher than usual, and ionization of B a little lower than usual. This causes the reversal of trend (the "jog" in the plot) across these two elements.

Between N and O. N has a stable half-filled 2p subshell, and O can achieve a stable half-filled subshell by losing an electron. Thus, the ionization energy of N is higher than O, resulting in a "jog" in the plot of ionization energies across these two elements.

Mg has a stable closed subshell configuration, which is disrupted by losing an electron. By contrast, Al can achieve a fully-filled subshell configuration by losing the lone electron in the 2p subshell. This makes ionization of Mg a little higher than usual, and ionization of Al a little lower than usual. This causes the reversal of trend (the "jog" in the plot) across these two elements.

Between P and S. N has a stable half-filled 2p subshell, and S can achieve a stable half-filled subshel by losing an electron. Thus, the ionization energy of P is higher than S, resulting in a "jog" in the plo of ionization energies across these two elements.

Calculate the energy associated with a transition of an electron from  $n_i = to n_j =$ 

What is the wavelength of the radiation emitted?

Answer ( CHECK YOUR NUMBERS. -1 SIG FIG, -1 WRONG ANS)

$$\Delta E = (-2.18 \times 10^{-18} \text{J}) \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = (-2.18 \times 10^{-18}) \left( \frac{1}{1^2} - \frac{1}{2^2} \right)$$

 $(-2.18 \times 10 - 18J)(0.75) = -1.635 \text{ E} - 18 \text{ Joules}$ 

E emitted = 1.635 E-18 Joules

 $= 1.64 \text{ x } 10^{-18} \text{ Joules}$ 

$$E = hv = hc/\lambda$$

$$\lambda = hc/E = \frac{(6.626 \times 10^{-54} J.s) \times (3 \times 10^{9} m/s)}{1.635 E - 18J} = 1.635 E - 18 \text{ Joules}$$

$$= 1.22 \text{ x} 10^{-7} \text{ meters}$$

$$= 122 \text{ nm}$$

Calculate the energy associated with the transition of an electron from  $n_i = 3$  to  $n_f = 2$ . What is the wavelength of the radiation emitted?

Answers

$$\Delta E = (-2.18 \times 10 - 18J) \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right) = (-2.18 \times 10 - 18) \left(\frac{1}{2^2} - \frac{1}{3^2}\right)$$

18)

 $(-2.18 \times 10 - 18J)(0.1389) = -3.0278E-19Joules$ 

E emitted =  $3.03 \times 10^{-19}$  Joules

$$E = hv = hc/\lambda$$
  

$$\lambda = hc/E = \frac{(6.626 \times 10^{-84} J.s.) \times (3 \times 10^8 m/s)}{3.027 E - 19J} = \frac{1.9878 E - 25}{3.027 E - 19} m$$
  

$$= 6.56 \times 10^{-7} \text{ meters}$$
  

$$= 656 \text{ nm}$$

Calculate the energy associated with the transition of an electron from  $n_i=3$  to  $n_f=1$ . What is the wavelength of the radiation emitted?

Answers

$$\Delta \mathbf{E} = (-2.18 \text{ x } 10 \text{ } -18 \text{ J}) \left( \frac{1}{n_f^2} - \frac{1}{n_t^2} \right) = (-2.18 \text{ x } 10 \text{ } -18) \left( \frac{1}{1^2} - \frac{1}{3^2} \right)$$

 $(-2.18 \times 10 - 18J)(0.8889) = -1.9378E-18Joules$ 

E emitted =  $1.94 \times 10^{-18}$  Joules

 $E = h\nu = hc/\lambda$ 

 $\lambda = hc/E = \frac{(6.626 \times 10^{-84} J.s.) \times (3 \times 10^8 m/s)}{1.938E - 18J} = \frac{1.938E - 25}{= 1.938E - 18}$   $= 1.03x \ 10^{-7} \ meters$   $= 103 \ nm$ 

Calculate the energy associated with the transition of an electron from  $n_i = 4$  to  $n_f = 3$ . What is the wavelength of the radiation emitted?

Answers

$$\Delta \mathbf{E} = (-2.18 \text{ x } 10 \text{ } -18 \text{ J}) \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = (-2.18 \text{ x } 10 \text{ } -18) \left( \frac{1}{3^2} - \frac{1}{4^2} \right)$$

 $(-2.18 \times 10 - 18J)(4.861 \text{ E} - 19) = -1.05972 \text{ E} - 19$ Joules

E emitted =  $1.06 \times 10^{-19}$  Joules

Corresponding wavelength:

 $E = hv = hc/\lambda$ 

 $\lambda = hc/E = \frac{\frac{(6.626 \times 10^{-54} J.s.) \times (3 \times 10^8 m/s)}{1.06E - 19J} = \frac{1.9878E - 25}{= 1.06E - 19} \text{ Joules}}{= 1.88 \text{ x } 10^{-6} \text{ meters}}$ = 1880 nm