		Control book and a control	to the statement of		
IPLE CHOICE. CNO	oose the one afternat	tive that best comple	ites the statement or	answers the question	
1) Which of the following would require the largest volume of 0.100 M sodium hydroxide solution for					1)
neutralization?	0.0500.14				
	0.0500 M phosphori				
•	0.0500 M hydrobrom				
,	0.0500 M sulfuric aci				
•	0.0500 M perchloric a 0.0500 M nitric acid	aciu			
L) 10.0 IIIL 01	0.0300 IVI TITLITE ACIU				
2) What volume (m	N N of 7 48 × 10-2 N/L	HCIO4 can be poutra	lized with 115 mL of	0.244 M sodium	2)
	IL) 01 7.40 × 10 - 101 1	10104 can be neutra	iizea witti 113 iiiL oi	0.244 IVI 30GIUIII	۷)
hydroxide? A) 750	D) 100	C) 8.60	D) 12E	E) 27E	
A) /30	B) 188	C) 6.00	D) 125	E) <u>375</u>	
,					
•	following condition	ns would always resu	Ilt in an increase in th	a internal energy of	3)
3) Which one of the	e following condition	ns would always resu	It in an increase in th	e internal energy of	3)
3) Which one of the a system?	_	_		e internal energy of	3)
3) Which one of the a system? A) The system	gains heat and does	work on the surroui	ndings.	e internal energy of	3)
3) Which one of the a system? A) The system B) The system	n gains heat and does n gains heat and has	s work on the surrou work done on it by	ndings. the surroundings.	e internal energy of	3)
3) Which one of the a system? A) The system B) The system C) The system	gains heat and does gains heat and has loses heat and does	work on the surrous work done on it by work on the surroun	ndings. the surroundings. dings.	e internal energy of	3)
3) Which one of the a system? A) The system B) The system C) The system D) The system	gains heat and does gains heat and has loses heat and does	s work on the surrou work done on it by	ndings. the surroundings. dings.	e internal energy of	3)
3) Which one of the a system? A) The system B) The system C) The system D) The system	n gains heat and does n gains heat and has n loses heat and does n loses heat and has v	work on the surrous work done on it by work on the surroun	ndings. the surroundings. dings.	e internal energy of	3)
3) Which one of the a system? A) The system B) The system C) The system D) The system E) None of the	n gains heat and does n gains heat and has n loses heat and does n loses heat and has v e above is correct.	work on the surroung work done on it by work on the surroung work done on it by the	ndings. the surroundings. dings.	e internal energy of	3)
3) Which one of the a system? A) The system B) The system C) The system D) The system E) None of the	n gains heat and does n gains heat and has n loses heat and does n loses heat and has v	work on the surroung work done on it by work on the surroung work done on it by the	ndings. the surroundings. dings.	e internal energy of	,
3) Which one of the a system? A) The system B) The system C) The system D) The system E) None of the	n gains heat and does n gains heat and has n loses heat and does n loses heat and has v e above is correct. ΔE is alw	work on the surroung work done on it by work on the surroung work done on it by the	ndings. the surroundings. dings.	e internal energy of	,
3) Which one of the a system? A) The system B) The system C) The system D) The system E) None of the 4) When a system _ A) absorbs hea B) gives off head	n gains heat and does on gains heat and has not loses heat and has not loses heat and has we above is correct. , ΔΕ is alway at and does work	s work on the surroun work done on it by work on the surroun work done on it by th ways negative.	ndings. the surroundings. dings.	e internal energy of	,
3) Which one of the a system? A) The system B) The system C) The system D) The system E) None of the 4) When a system _ A) absorbs hea B) gives off hea C) gives off hea	n gains heat and does n gains heat and has n loses heat and has v e above is correct. , ΔE is alw at and does work eat and does work	s work on the surroun work done on it by work on the surroun work done on it by th ways negative.	ndings. the surroundings. dings.	e internal energy of	,

Which of the following is a statement of the first law of thermodynamics?

A) Energy lost by the system must be gained by the surroundings.

B) A negative ΔH corresponds to an exothermic process.

C) 1 cal = 4.184 J (exactly)

- D) $E_{K} = \frac{1}{2} m v^{2}$
- E) $\Delta E = E_{final} E_{initial}$

6) The reaction	6)
$4AI (s) + 3O_2 (g) \rightarrow 2AI_2O_3 (s)$ $\Delta H^{\circ} = -3351 \text{ kJ}$	
is, and therefore heat is by the reaction. A) endothermic, absorbed B) exothermic, released C) exothermic, absorbed D) endothermic, released E) thermoneutral, neither released nor absorbed	
7) The units of of specific heat are A) J/K or J/°C B) <u>J/g-K or J/g-°C</u> C) K/J or °C/J D) g-K/J or g-°C/J E) J/mol	7)
8) For which one of the following reactions is ΔH°_{TXN} equal to the heat of formation of the product? A) $(1/2)N_{2}(g) + O_{2}(g) \rightarrow NO_{2}(g)$ B) $12C(g) + 11H_{2}(g) + 11O(g) \rightarrow C_{6}H_{22}O_{11}(g)$ C) $6C(s) + 6H(g) \rightarrow C_{6}H_{6}(l)$ D) $N_{2}(g) + 3H_{2}(g) \rightarrow 2NH_{3}(g)$ E) $P(g) + 4H(g) + Br(g) \rightarrow PH_{4}Br(l)$	8)
9) In the presence of excess oxygen, methane gas burns in a constant-pressure system to yield carbon dioxide and water:	9)
$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$ $\triangle H = -890 \text{ kJ}$	
Calculate the value of q (kJ) in this exothermic reaction when 1.70 g of methane is combusted at constant pressure. A) <u>-94.6</u>	

- B) 0.0306
- C) -9.46×10^4
- D) 32.7
- E) -0.0106
- 10) The photoelectric effect is _____.

10) _____

- A) a relativistic effect
- B) the production of current by silicon solar cells when exposed to sunlight
- C) the total reflection of light by metals giving them their typical luster
- D) the ejection of electrons by a metal when struck with light of sufficient energy
- E) the darkening of photographic film when exposed to an electric field

11) Electromagnetic radiation travels through vacuum at a speed of m/s.					11)
A) 125					
B) 10,000					
C) 3.00 × 10 ⁸					
D) 186,000 E) It depends or	wavelength				
L) it depends of	i wavelength.				
12) What is the frequen	acy (s-1) of alactrom	agnotic radiation th	at has a wayolongth (of 0.52 m2	12)
12) What is the frequency (s ⁻¹) of electromagnetic radiation that has a wavelength of 0.53 m? A) 1.3×10^{-33}					
B) 1.8 × 10 ⁻⁹					
C) 1.6 × 10 ⁸					
D) <u>5.7 × 10⁸</u>					
E) 1.3 × 10 ³³					
E) 1.3 × 1000					
13) Given the followin	a reactions:				13)
10) Civen the renewin	g rodotrons.				
2S (s) + 30	$O_2(g) \rightarrow 2SO_3(g)$	△H = -790 k	J		
$S(s) + O_2$	$(g) \rightarrow SO_2(g)$	△H = -297 k	J		
the enthalpy of the	reaction in which su	ılfur dioxide is oxid	ized to sulfur trioxid	e	
2SO2 (a) +	$O_2(g) \rightarrow 2SO_3(g)$				
(g)	-2 (g) === 3 (g)				
is kJ.					
A) 1087	B) -1384	C) -543	D) <u>-196</u>	E) 196	
14) The energy of a ph	oton that has a frequ	ency of 8.21 × 10 ¹⁵ :	s-1 is J.		14)
A) 1.26 × 10 ⁻¹⁹					
B) 1.99 × 10 ⁻²⁵					
C) 1.24 × 10 ⁴⁹					
D) <u>5.44 × 10-18</u>					
E) 8.08×10^{-50}					
					>
15) The energy of a ph		proportional	to its frequency and		15)
proportional to its A) directly, inve					
B) indirectly, no					
C) inversely, inv					
D) directly, directly	ctly				
E) inversely, dir	ectly				

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

16) A 25.00-mL sample of sodium chloride solution was titrated with 0.4500 M AgNO³ solution, requiring 27.62 mL to reach the equivalence point.

The titration reaction equation is

$$Cl^{-}(aq) + AgNO_{3}(aq) \longrightarrow AgCl(s) + NO_{3}^{-}(aq)$$

A. What was the concentration of Cl_ion in the original sample

B. How many grams of precipitate were formed? (f.w. Ag Cl = 143.32 u).

17)

A 3.53-g sample of KNO $_3$ (f.w. = 101.11 u) was added to 97.77g of water in a coffee-cup calorimeter. The initial temperature of the water was 22.5 $^{\rm o}$ C and the temperature of the solution after mixing was 20.4 $^{\rm o}$ C. On the basis of this experiment, what is the heat of solution per mole of KNO $_3$ [f.w. = 101.11 u]? The specific heat of water is 4.184 J/g $^{\rm o}$ C.