Limiting Reagent

Exercise 20
What is the theoretical yield of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$ by the reaction

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}(s)+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

when $10.00 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ and $10.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$ are mixed? [F.W. $\mathrm{Ca}(\mathrm{OH})_{2}=74.10 \mathrm{u}$; M.W. $\mathrm{H}_{3} \mathrm{PO}_{4}=97.99 \mathrm{u}$; F.W. Ca3 $\left(\mathrm{PO}_{4}\right)_{2}=310.18 \mathrm{u}$]

Answer:

$\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}: 10.00 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{74.10 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}=0.13495 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ $\mathrm{mol} \mathrm{H}_{3} \mathrm{PO}_{4}: 10.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}=0.10205 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$

Identify limiting reagent by dividing each number of moles by its stoichiometric coefficient in the balanced equation to determine the "sets" for each: $\begin{aligned} & \text { sets } \mathrm{Ca}(\mathrm{OH})_{2}: \\ & : \end{aligned}$	$\begin{aligned} & \text { Or } \\ & 0.13495 \mathrm{~mol} \text { of } \mathrm{Ca}(\mathrm{OH}) 2 \times \frac{2 \text { mol of } \mathrm{H} 3 \mathrm{PO} 4}{3 \text { mol of } \mathrm{Ca}(\mathrm{OH}) 2} \\ & =0.0899 \mathrm{~mol} \mathrm{H} 3 \mathrm{PO} 4 \end{aligned}$ Since we have more than that much of H3PO4 Ca(ON)2 is limiting

$\rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$ is the limiting reagent, has fewer "sets"
Calculate the mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$:

$$
\begin{aligned}
& \operatorname{mass} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& =0.13495 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{PO}_{4}\right)_{2}}{3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}} \times \frac{310.18 \mathrm{~g} \mathrm{Ca}}{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& 1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& =13.95321=13.95 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}
\end{aligned}
$$

What is the theoretical yield of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$ by the reaction

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

when $8.00 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ and $11.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$ are mixed? [F.W. $\mathrm{Ca}(\mathrm{OH})_{2}=74.10 \mathrm{u}$; M.W. $\mathrm{H}_{3} \mathrm{PO}_{4}=97.99 \mathrm{u}$; F.W. $\left.\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=310.18 \mathrm{u}\right]$

Answer

$$
\begin{gathered}
\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}: 8.00 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{74.10 \mathrm{~g} \mathrm{Ca(OH)}_{2}}=0.107962 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\
\mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}: 11.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}=0.112256 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}
\end{gathered}
$$

Identify limiting reagent by dividing each number of moles by its stoichiometric coefficient in the balanced equation to determine the "sets" for each: $\begin{aligned} \text { sets } \mathrm{Ca}(\mathrm{OH})_{2}: & 0.107962213 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\ & \times \frac{1 \mathrm{set} \mathrm{Ca}(\mathrm{OH})_{2}}{3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}} \\ = & 0.0359874 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\ \text { sets } \mathrm{H}_{3} \mathrm{PO}_{4}= & 0.11225 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \\ & \times \frac{1 \mathrm{set} \mathrm{H}_{3} \mathrm{PO}_{4}}{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}} \\ & =5.612817 \mathrm{E} \\ & -2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \end{aligned}$ $\rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$ is the limiting reagent, has fewer "sets"	Or $0.107962 \text { _mol of } \mathrm{Ca}(\mathrm{OH}) 2 \mathrm{x}$ $\frac{2 \text { mol of } \mathrm{H} 3 \mathrm{PO} 4}{3 \mathrm{~mol} \text { of } \mathrm{Ca}(\mathrm{OH}) 2}$ = _071974 \qquad mol H3PO4 Since we have more than that much of H3PO4 $\mathrm{Ca}(\mathrm{ON}) 2$ is limiting

Calculate the mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$:

$$
\begin{aligned}
& \operatorname{mass} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& \\
& =0.107962 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}} \times \frac{310.18 \mathrm{~g} \mathrm{Ca}}{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& 1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
&
\end{aligned}
$$

What is the theoretical yield of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$ by the reaction

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{I}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+6 \mathrm{H}_{2} \mathrm{O}(I)
$$

when $12.00 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ and $12.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$ are mixed? [F.W. $\mathrm{Ca}(\mathrm{OH})_{2}=74.10 \mathrm{u}$; M.W. $\mathrm{H}_{3} \mathrm{PO}_{4}=97.99 \mathrm{u}$; F.W. Ca3 $\left(\mathrm{PO}_{4}\right)_{2}=310.18 \mathrm{u}$]

Answer:
$\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}: 12.00 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{74.10 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}=0.161943 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ $\mathrm{mol} \mathrm{H}_{3} \mathrm{PO}_{4}: 12.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}=0.122461 \mathrm{~mol} \mathrm{H} \mathrm{HO}_{4}$
Identify limiting reagent by dividing
each number of moles by its
stoichiometric coefficient in the balanced
equation to determine the "sets" for
each:

sets $\mathrm{Ca}(\mathrm{OH})_{2}$	$:$
	$\times \frac{1.161943 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}$
	$=5.39811 \mathrm{E}$
	$-2 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$

sets $H_{3} \mathrm{PO}_{4}=0.122461 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$
$\times \frac{1 \text { set } \mathrm{H}_{3} \mathrm{PO}_{4}}{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}$
$=6.12307 \mathrm{E}$
$-2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$
$\rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$ is the limiting reagent, has fewer "sets"
_0.161943 ___mol of $\mathrm{Ca}(\mathrm{OH}) 2 \mathrm{x}$ $\frac{2 \text { mol of } \mathrm{H} 3 \mathrm{PO} 4}{3 \text { mol of } \mathrm{Ca}(\mathrm{OH}) 2}$
$=\ldots 0.107933$ \qquad mol H3PO4

Since we have more than that much of H3PO4 Ca(ON)2 is limiting

Calculate the mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$:

$$
\begin{aligned}
& \text { mass } \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& =0.161943 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}}{3}\left(\mathrm{PO}_{4}\right)_{2}{\mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}_{3 \mathrm{~mol}}^{310.18 \mathrm{~g} \mathrm{Ca}} \mathrm{a}_{3}\left(\mathrm{PO}_{4}\right)_{2} . \\
& =16.74385=16.74 \mathrm{~g} \mathrm{Ca} 3\left(\mathrm{PO}_{4}\right)_{2}
\end{aligned}
$$

What is the theoretical yield of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$ by the reaction

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}(s)+2 \mathrm{H}_{3} \mathrm{PO}_{4}(I) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

when $15.00 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ and $14.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$ are mixed? [F.W. $\mathrm{Ca}(\mathrm{OH})_{2}=74.10 \mathrm{u}$; M.W. $\mathrm{H}_{3} \mathrm{PO}_{4}=97.99$ u; F.W. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=310.18 \mathrm{u}$]

Answer:

$$
\begin{gathered}
\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}: 15.00 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{74.10 \mathrm{~g} \mathrm{Ca(OH})_{2}}=0.20242 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\
\mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}: 14.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}=0.142871 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}
\end{gathered}
$$

Identify limiting reagent by dividing each number of moles by its stoichiometric coefficient in the balanced equation to determine the "sets" for each: $\text { sets } \begin{aligned} \mathrm{Ca}(\mathrm{OH})_{2}: & 0.202429 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\ & \times \frac{1 \mathrm{set} \mathrm{Ca}(\mathrm{OH})_{2}}{3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}} \\ & =6.74763 \mathrm{E} \\ & -2 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\ \text { sets } \mathrm{H}_{3} \mathrm{PO}_{4}= & 0.1428717 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \\ & \times \frac{1 \mathrm{set} \mathrm{H}_{3} \mathrm{PO}_{4}}{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}} \\ & =7.14358 \mathrm{E} \\ & -2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \end{aligned}$ $\rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$ is the limiting reagent, has fewer "sets"	Since we have more than that much of H3PO4 Ca(ON)2 is limiting

Calculate the mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$:

$$
\begin{aligned}
& \text { mass } \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& \\
& =0.20242 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}} \times \frac{310.18 \mathrm{~g} \mathrm{Ca}}{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& 1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& \\
& =20.9298=20.93 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}
\end{aligned}
$$

