Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Which electron configuration represents a violation of the Pauli exclusion principle?

2) Which of the following is a valid set of four quantum numbers? (n, l, m₁, m_s)

- A) 2, 1, +2, +1/2
- B) 2, 2, 1, -1/2
- C) 1, 1, 0, -1/2
- D) <u>2, 1, 0, +1/2</u>
- E) 1, 0, 1, +1/2

3) The ground state electron configuration of Ga is ______.

A) <u>1s22s22p63s23p63d104s24p1</u>

- B) [Ar]4s²3d¹¹
- C) 1s²2s²2p⁶3s²3p⁶4s²4d¹⁰4p¹
- D) 1s²2s²3s²3p⁶3d¹⁰4s²4p¹
- E) 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4d¹

1)

2)

3)

4) Which one of the following configurations depicts an excited oxygen atom?

- A) <u>1s²2s²2p²3s²</u>
- B) 1s²2s²2p⁴
- C) [He]2s²2p⁴
- D) 1s²2s²2p²
- E) 1s²2s²2p¹

5) Which electron configuration represents a violation of Hund's rule for an atom in its ground state?

6) Which of the following elements has a ground-state electron configuration different from the predicted one?					6)
A) Xe	B) Ti	C) Ca	D) CI	E) <u>Cu</u>	
7) How many different principal quantum numbers can be found in the ground state electron configuration of nickel?					7)
A) 2	B) 3	C) <u>4</u>	D) 5	E) 6	
 8) Of the following, which gives the correct order for atomic radius for Mg, Na, P, Si and Ar? A) Ar > Si > P > Na > Mg B) Mg > Na > P > Si > Ar C) Si > P > Ar > Na > Mg D) <u>Na > Mg > Si > P > Ar</u> E) Ar > P > Si > Mg > Na 					

5)

4)

2

	 9) The atomic radius of main-group elements generally increases down a group because A) effective nuclear charge decreases down a group B) effective nuclear charge increases down a group C) the principal quantum number of the valence orbitals increases D) effective nuclear charge zigzags down a group E) both effective nuclear charge increases down a group and the principal quantum number of the valence orbitals increased principal quantum number of the valence orbitals increases 					9)	
	10) O	f the following atom A) C	s, which has the larg B) P	est <u>first</u> ionization er C) I	nergy? D) Br	E) <u>O</u>	10)
	11) W	(hich of the following A) <u>AI[±] (g) → AI²⁺</u> B) AI ⁺ (g) + e ⁻ → C) AI ⁻ (g) + e ⁻ → D) AI ⁺ (g) + e ⁻ → E) AI (g) → AI ⁺ (g)	g correctly represent (<u>g) + e</u> _ Al (g) Al ²⁻ (g) Al ²⁺ (g) + e ⁻	s the <u>second</u> ionizatio	on of aluminum?		11)
	12) O	f the following eleme A) <u>CI</u>	ents, has B) S	the most negative el C) Se	ectron affinity. D) Br	E) I	12)
Consid	der the	following electron con	figurations to answer t	the questions that follow	W:		
	(i) (ii) (iii) (iv) (v)	1s ² 2s ² 2p6 3s ¹ 1s ² 2s ² 2p6 3s ² 1s ² 2s ² 2p6 3s ² 3p ¹ 1s ² 2s ² 2p6 3s ² 3p ⁴ 1s ² 2s ² 2p6 3s ² 3p ⁵					
	13) TI	ne electron configura	tion belonging to th	e atom with the high	est second ionization	energy is	13)
		A) <u>(i)</u>	B) (ii)	C) (iii)	D) (iv)	E) (v)	
	14) O	f the following oxide A) Na ₂ O	es, is the B) CaO	most acidic. C) Li ₂ O	D) Al ₂ O ₃	E) <u>CO2</u>	14)
	15) TI	nis element is more r	eactive than lithium	and magnesium but	less reactive than po	tassium. This	15)
	ei	A) Be	B) <u>Na</u>	C) Rb	D) Ca	E) Fr	
	16) W (T	(hich of the following the symbol M represe A) 2M (s) + Cl ₂ (g) B) 2M (s) + 2H ₂ O C) $M(s) + O_2(g) -$ D) 2M (s) + H ₂ (g) E) 2M (s) + S (s) -	g generalizations <u>car</u> ents any one of the a → 2MCI (s) (I) → 2MOH (aq) + <u>→ MO₂ (s)</u> → 2MH (s) → M ₂ S (s)	<u>nnot</u> be made with re Ikali metals.) H ₂ (g)	gard to reactions of a	ılkali metals?	16)

17) Of 1 A	the following stater	ments,	is <u>not</u> true for ox	ygen.		17)	
E	B) The most stable a	allotrope of oxyg	jen is O ₂ .				
C	C) <u>Dry air is about</u>	79% oxygen.					
C	D) The chemical form	mula of ozone is	O3.				
E	E) Oxygen forms pe	eroxide and supe	eroxide anions.				
18) In r	nature, the noble ga	ses exist as				18)	
A	A) solids in rocks ar	nd in minerals					
Ŀ	3) <u>monatomic gase</u>	ous atoms					
Г)) the sulfides						
E	E) the gaseous fluor	rides					
ider the fo	llowing electron conf	figurations to answ	wer the questions tha	t follow:			
(i) 1	_s 2 _{2s} 2 _{2p} 6 _{3s} 1						
(ii) 1	s ² 2s ² 2p6 3s ²						
(iii) 1	s ² 2s ² 2p ⁶ 3s ² 3p ¹						
(iv) 1	s ² 2s ² 2p6 3s ² 3p ⁴						
(v) 1	s ² 2s ² 2p ⁶ 3s ² 3p ⁵						
19) The	e electron configura	tion of the atom	that is expected to	have a positive electro	n affinity is	19)	
	 λ) (i)	B) <u>(ii)</u>	C) (iii)	D) (iv)	E) (v)		
20) Lat	tice energy is	·				20)	
A	 A) the energy require in their standard 	red to produce o states	ne mole of an ionic	compound from its co	nstituent elements	-	
E	B) <u>the energy requi</u>	red to convert a	mole of ionic solid	d into its constituent ic	ons in the gas		
C	C) the sum of ioniza	ation energies of	the components in	an ionic solid			
C) the energy given	off when gaseou	us ions combine to	form one mole of an io	nic solid		
E	E) the sum of electro	on affinities of th	ne components in a	n ionic solid			
21) For	a given arrangeme	ent of ions, the la	ttice energy increas	ses as ionic radius	and as ionic	21)	
cha	rge					-	
A	A) <u>decreases, increa</u>	ases					
E	3) increases, increas	ses					
Г)) decreases, decrea	363					
E	E) This cannot be pr	redicted.					
22) The	electron configura	ition of the S2- id	nn is			22)	
,c	() [Ar]3s ² 3n ²						
F ,	3) [Ne]3s23n2						
C C	$(Ne]_{3s}^{23}n6$						
Г	(1,10,00,0)						
L)) K r 394 / n=0						
) [Kr]3s=2p=0 =) [Δr]3s=23n6						

23) What is the electron configuration for the Co^{2+} ion?					
A) [Ar]4s ¹ 3d6					
B) [Ne]3s ² 3p ¹⁰					
C) <u>[Ar]3d</u> 7					
D) [Ar]4s ² 3d ⁹					
E) [Ar]4s ⁰ 3d ⁵					
24) Which one of the following orbitals can hold two electrons?					
A) 4d _{Xy}					
B) 3s					
C) 2p _X					
D) all of the above					
E) none of the above					
25) Which one of the following is an incorrect orbital notation?					
A) 3py B) 4s C) 4d _{XV} D) 2s	E) 3f				