
Chem 115 POGIL Worksheet - Week 8
Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Why?
As we saw last week, enthalpy and internal energy are state functions, which means that the sum
of the heats of any set of steps that adds to give an overall reaction will have the same heat as
doing the reaction directly.  This is Hess’s Law.  We will revisit this today and go on to see that
if we use a special kind of thermochemical reaction, called the standard enthalpy of formation,
we can calculate enthalpies of reactions without having to manipulate a series of individual
thermochemical equations for each step.

To understand the modern model of atomic structure, we need to look at the nature of light and
other forms of electromagnetic radiation.  One of the most important ideas to emerge at the start
of the twentieth century was that energy of subatomic particles and electromagnetic radiation is
not continuous, but rather is quantized in discrete allowable values.  An understanding of the
basic relationships among the characteristic properties of electromagnetic radiation and an
appreciation of the nature of state-to-state transitions in quantized systems will lay a foundation
for understanding the modern quantum mechanical model of the atom.

Learning Objective
• Understand Hess’s Law
• Understand the definition and use of standard enthalpy of formation
• Understand the fundamental relationships of electromagnetic radiation and the

electromagnetic spectrum
• Understand the relationship between line spectra and the quantum concept

Success Criteria
• Be able to calculate enthalpy of a target reaction from a series of given reactions
• Be able to apply standard enthalpies of formation to calculate the enthalpy of a reaction
• Be able to do conversions between energy, wavelength, and frequency of electromagnetic

radiation
• Be able to correlate state-to-state transitions with region of the electromagnetic spectrum and

calculate the energy of a state-to-state transition

Prerequisite
• Have read sections 5.6 and 5.7
• Have read sections 6.1 through 6.3



Information Revisited (Standard Conditions, State Functions and Hess's Law)
Remember that the measured value of ÄH depends on the states of all reactants and products (s, l,
g, aq) and the temperature and pressure under which the reaction occurs.  In order to make
meaningful direct comparisons, it is useful to define a set of standard conditions.  By
international agreement, standard conditions are defined as T = 25 C; P = 1 atm; all substanceso

in their usual states for these conditions (the standard state).  The standard state of an element is

2 8 4its most stable state; e.g., H (g), C(s) – graphite, S (s), P (s).  For compounds, the standard state

2 2 2 2 6 6is the most prevalent state under standard conditions; e.g., H O(l), CO (g), C H (g), C H (l).

Enthalpy is a state function, which only depends upon current conditions (the state of the

f isystem) for its value, not on how the current state was reached.  As applied to ÄH = H  – H , the
value of the enthalpy change for any process depends only on the difference between the final
and initial states, not on the path chosen.  This means that any set of steps, whether real or
imagined, that take the system from the initial state to the final state of interest will have a sum of
ÄH values for all the steps that is equal to the value of ÄH for the overall process done directly. 
This principle, called Hess's Law of Constant Heat Summation, was first established by G. H.
Hess in 1840: 

The enthalpy change for a reaction is independent of path. 

In applying Hess's Law, a set of given thermochemical equations is manipulated such that they
add to give a balanced thermochemical equation for the process of interest (the target equation). 
In doing this, whenever a given thermochemical equation is multiplied (usually by an integer or
rational fraction), its ÄH is likewise multiplied. Whenever the direction of a given
thermochemical equation is reversed, its ÄH value changes sign.

Review Exercise

1. Calculate ÄH  for the reaction,o

2 2 2 2 4C H (g) + H (g) ÷ C H (g)
Given:

2 2 2 2 2(a) 2 C H (g) + 5 O (g) ÷ 4 CO (g) + 2 H O(l) ÄH  = –2599.2 kJo

2 4 2 2 2(b) C H (g) + 3 O (g) ÷ 2 CO (g) + 2 H O(l) ÄH  = –1410.9 kJo

2 2 2(c) H (g) + ½ O (g) 6 H O(l) ÄH  = –285.8 kJo

fInformation (Standard Enthalpies of Formation, ÄH )o

Hess’s Law calculations are done so frequently that it is convenient to have tabulated data for a
large number of reactions.  The most generally useful data for these kinds of calculations are
standard enthalpies of formation.



fThe standard enthalpy of formation, ÄH , of a compound is the enthalpy change for theo

reaction in which one mole of the compound in its standard state is made from the
stoichiometric amounts of its elements in their standard states.  For all elements in their

fstandard states, ÄH  / 0, by definition.o

For example, the following thermochemical equations define standard enthalpies of formation for

2 2 2 4C H (g) and C H (g), respectively.

2 2 2 f(a) 2 C(s) + H (g) ÷ C H (g) ÄH  = +226.8 kJo

2 2 4 f(b) 2 C(s) + 2 H (g) ÷ C H (g) ÄH  = +52.3 kJo

Notice that each of these equations gives the heat produced when exactly one mole of the product
compound is made.  There are no thermochemical equations for the formation of substances such

2as C(s) as graphite or H (g) as the gaseous element, because these are their normal elemental
states.  Their standard enthalpies of formation are set as zero by definition.

Let’s use the two enthalpy of formation equations given above to calculate the enthalpy of the
following reaction:

2 2 2 2 4C H (g) + H (g) ÷ C H (g) ÄH  = ?o

You calculated the enthalpy of this reaction in Review Exercise 1, but now we are going to do it

f 2 2 2 4with the thermochemical equations that define ÄH  for C H (g) and C H (g).  To do this, weo

simply need to take the reverse of equation (a) with the negative of its given enthaply, and add it
to equation (b), using its given enthalpy.  The resulting sum is:

2 2 2 f(–a)  C H (g) ÷ 2 C(s) + H (g) ÄH  = –226.8 kJo

2 2 4 f(b) 2 C(s) + 2 H (g) ÷ C H (g) ÄH  = +52.3 kJo

_______________________________________________

2 2 2 2 4C H (g) + H (g) ÷ C H (g) ÄH  = –174.5 kJo

This is the same answer you obtained in exercise 1 (if you did it correctly), as expected on the

fbasis of Hess’s Law.  But notice that the answer we obtain here is the following sum, where ÄHo

2 2(H ) = 0, because H (g) is an element in its standard state:

rxn f 2 4 f 2 2 f 2 ÄH  = ÄH (C H ) – {DH (C H ) + ÄH (H )} o o o o

= {+52.3 kJ} – {–226.8 kJ + 0 kJ}

This is the sum of the enthalpies of formation of the products, multiplied by their stoichiometric
coefficients (here, 1), minus the sum of the enthalpies of formation of the reactants, multiplied by
their stoichiometric coefficients (here again, both 1).  This is a general result, which we can
summarize as

rxn p p r rÄH  = Ón ÄH  – Ón ÄHo o o

p rwhere n  and n  are the stoichiometric coefficients of each of the products and each of the
reactants, respectively.  [The Ó (Greek sigma) means “take the sum of”.]  Note that this
relationship can only be used if all the data are enthalpies of formation.  For a general reaction 



aA + bB 6 cC + dD, 
we would have

rxn f f f fÄH  = [cÄH (C) + dÄH (D)] – [aÄH (A) + bÄH (B)]o o o o o

Key Questions

2. Write the balanced thermochemical equations that pertain to the standard enthalpies of
formation of the given compounds.

fCompound ÄH  (kJ/mol) Thermochemical Equationo

4CCl (g) –106.7

2 3Fe O (s) –822.16

3HNO (g) –134.31

3NaHCO (s) –947.7

Exercises

3. i. Given:

2 4 2 2 5(a) N O (g) + 1/2 O (g) ÷ N O (g) ÄH  = +1.67 kJo

3 2 5 2(b) HNO (g) ÷ 1/2 N O (g) + 1/2 H O(l) ÄH  = –2.96 kJo

Calculate ÄH  for the reaction o

2 4 2 2 3N O (g) + H O(l) + 1/2 O (g) ÷ 2 HNO (g) ÄH  = ?o

ii.  Given following standard enthalpy of formation data:

f Compound ÄH  (kJ/mol)o

2 4N O (g) +9.66

3HNO (g) –134.31

2H O(l) –285.83

Calculate ÄH  for the reaction o

2 4 2 2 3N O (g) + H O(l) + 1/2 O (g) ÷ 2 HNO (g) ÄH  = ?o

Compare your answer to your answer in part i.



44. Calculate the heat of combustion of methane, CH (g), defined by the following
thermochemical equation:

4 2 2 2 rxnCH (g) + 2 O (g) 6 CO (g) + 2 H O(l) ÄH  = ?o

Given the following standard enthalpies of formation:

f Compound ÄH  (kJ/mol)o

4CH (g) –74.85 

2CO (g) –393.5 

2H O(l) –285.8 kJ

f 6 65. Calculate the enthalpy of formation, ÄH , for benzene, C H (l), given that the heats ofo

2 2formation of CO (g) and H O(l) are –393.5 kJ and –285.8 kJ, respectively, and that the heat

6 6of combustion of C H (l) is –3267.7 kJ.  To do this, carry out the following steps.

i. Write the balanced thermochemical equation that defines the enthalpy of formation of

6 6benzene, C H (l).

ii. Write the balanced thermochemical equation for the heat of combustion of benzene,

6 6C H (l).

iii. Based on your answer to question ii, write an expression for the heat of combustion of

combbenzene, ÄH , in terms of the enthalpies of formation of the reactants and products. o

f 6 6Using the data given in the problem, solve this for the unknown value of ÄH (C H ), theo

enthalpy of formation of benzene.

Information (Electromagnetic Radiation)
Light and other forms of radiant energy can be thought of a being propagated as a wave of
oscillating electric and magnetic components.  Hence, we call radiant energy electromagnetic
radiation.  Electromagnetic radiation is characterized by its energy (E), wavelength (ë – Greek
lambda), and frequency (í – Greek nu).  The speed of propagation in a vacuum, commonly called
the speed of light (c), is 2.9979 x 10  mAs .  The relationships between E, ë, and í are8 –1

í = c/ë

E = hí = hc/ë

where h is Plank’s constant, equal to 6.626 x 10  JAs.  These equations apply to all kinds of–34

electromagnetic radiation.  The units of wavelength are usually nanometers (nm), where 1 nm =
10  m, although other length units may be used, depending on the radiation.  An older unit called–9

the Ångstrom (Å) is sometimes used with light and with x-rays, where 1 Å = 10  m = 0.1 nm. –10



Frequency usually has units of sec , called the hertz (Hz).  This means the number of waves that–1

pass a reference point per second, but the word “wave” is not part of the unit and does not factor
into the dimensional analysis.

The following chart shows the wavelength ranges of the various kinds of electromagnetic
radiation.

Key Questions

6. For each of the following, indicate which kind of radiation has higher energy.
red light or blue light
infrared radiation or radio waves
x-rays or visible light

7. For each of the following, indicate which has higher frequency
light with ë = 490 nm or light with ë =  520 nm
light with energy of 3.0 x 10  J or light with energy of 4.5 x 10  J–19 –19

Exercise

8. An argon laser emits green light with a wavelength of 514.5 nm.  Calculate the following for
this light: (a) the wavelength in Å; (b) the frequency in Hz (s ); (c) the energy in joules, J.-1



Information (Line Spectra and the Bohr Model)

2Electrons bombarding hydrogen gas (H ) in a discharge tube cause the formation of monatomic H
atoms, some of which are in high energy states (excited states).  The atoms can lose a portion of
their excess energy by emitting electromagnetic radiation.  Rather than a continuous spectrum
containing all wavelengths within a range, the emitted radiation of hydrogen and other
monatomic gasses consists of only certain characteristic wavelengths, which are typically
observed as discrete lines in the spectrum, falling in the range from the ultraviolet region through
the infrared region.  Hence, these spectra are called line spectra.  For hydrogen, four of these
wavelengths fall in the visible region (where they can be seen by a human eye) and give lines that
are violet (410 nm), blue (434 nm), blue-green (486 nm), and red (656 nm).  In 1885, Balmer
determined that these lines fit a relatively simple equation that relates the reciprocal of their

1 2wavelength (1/ë) to pairs of integers (n  and n ).  When additional lines in the invisible infrared
and ultraviolet regions were discovered, they and Balmer’s visible lines were all found to fit the
following general equation:

2 1where U, the Rydberg constant, is 1.096776 x 10  m , and the n values are integers with n  > n . 7 -1

This equation was only valid for the emissions from hydrogen, a one-electron atom.  In the case

1 1of the visible lines of the Balmer series, the value of n  is 2.  When n  = 1, the associated lines

1fall in the ultraviolet region (the Lyman series).  Values of n  $ 3 correspond to successive series
that fall in the infrared region (the Paschen, Brackett, and Pfund series), with increasing

1wavelength and decreasing frequency and energy as n  increases.

Neils Bohr, inspired by the Balmer equation and Max Plank’s ideas of quantized energy, devised
a model for the hydrogen atom.  In Bohr’s model the single electron is thought to be confined to
certain orbits around the nucleus, where each orbit corresponds to a particular, quantized energy,
given by the equation

Here n, the principal quantum number, can take on integer values from 1 to 4.  This equation can
be extended to other one-electron atoms (e.g., He , Li ) in the form + 2+

E = –BZ /n n = 1, 2, 3, ...2 2

where B is a constant similar to the Rydberg constant and Z is the atomic number (number of
protons).  In either form, the Bohr equation predicts that the energy of the one-electron atom is
inversely proportional to the square of the quantum number of its state.  This gives rise to the
energy level diagram shown on the last page of this work sheet, in which the spacing between
energy states gets smaller as n increases. 



In Bohr’s model, as n increases, the electron is in an orbit that is further from the nucleus and
therefore has a higher (less negative) energy.  Note that the zero of energy corresponds to n = 4,
which has the electron an infinite distance away from the nucleus.  Any lower value of n places
the negative electron closer to the positive nucleus to which it is attracted, giving rise to a more
favorable (negative) energy.  The atom absorbs or emits energy in the form of electromagnetic

i i f fradiation by changing from an initial state (E ) with a value n  to a final state (E ) with a value n . 
These changes in state are called transitions.  With absorption, the atom acquires energy,

f iresulting in a higher energy state.  Thus, for an absorption transition, n  > n .  With emission, the

f iatom loses energy, resulting in a lower energy state.  Thus, for emission,  n  < n .  It is transitions
from higher energy states to lower energy states that give rise to the observed line spectra.  For
any transition, the energy of the electromagnetic radiation (a photon) absorbed or emitted must
exactly match the energy difference between the two states; i.e.,

f i photonÄE = E  – E  = E  = hí

f iUsing the Bohr equation for the allowed energies in states n  and n , we can write an equation to
calculate the photon’s energy as

This equation has the same form as the experimentally determined Balmer equation, if we

f i 1 2assume n  and n  of the Bohr equation correspond to n  and n  of the Balmer equation.  Regardless
of whether absorption or emission is involved, the energy of a photon is always taken as a
positive number, so any sense of sign to the energy calculated from this equation is routinely
dropped.

As the diagram on the last page shows, the Balmer series, which gives rise to the four lines in the

fvisible spectrum, corresponds to transitions from higher states down to n  = 2 (i.e., 3 ÷ 2, 4 ÷ 2,

f i5 ÷ 2, 6 ÷ 2).  The energy gaps between n  = 2 and n  > 2 are such that the wavelengths of the
emitted photons fall in the visible region.  In the Lyman series (see diagram), the transitions are

ffrom upper states down to the lowest state (n  = 1), called the ground state of the atom.  The gaps
between n = 1 and n > 1 states are bigger, and so the emitted photons have higher energies,
falling in the ultraviolet region.  By contrast, in the Paschen series (see diagram), the transitions

fare from higher states down to n  = 3.  Because the energy separations between states with higher
n values are smaller, the transitions have lower energies, falling in the infrared region.  The

fenergy differences are even smaller when the transitions are from upper states to either n  = 4 or

fn  = 5, making the emitted radiation fall even further into the infrared region for these series  (cf.
Brackett and Pfund series on the diagram).



Key Questions

9. Is energy emitted or absorbed when the following transitions occur in hydrogen: (a) from n =
1 to n = 3, (b) from n = 5 to n = 2, (c) an H  ion acquires an electron into the n = 2 state.+

10. The four visible lines of the Balmer series in the emission spectrum of hydrogen are violet
(410 nm), blue (434 nm), blue-green (486 nm), and red (656 nm).  Assign these as state-to-

i fstate transitions of the type n  ÷ n , giving the n values involved for each line.

Exercise

11. Calculate the energy of the first line in the Lyman series for the hydrogen atom, which arises

i ffrom a transition from n  = 2 to n  = 1.  What is the wavelength of the radiation emitted?  In
what region of the electromagnetic spectrum does it fall?



Energy Level Model for a One-Electron Atom
(Named series are for the hydrogen atom.)


