| Name | | | | |-------|--|--|--| | ranic | | | | ## MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The pH of a solution that contains 0.818 M acetic acid ($K_a = 1.76 \times 10^{-5}$) and 0.172 M sodium 1) ____ acetate is ____ A) 4.08 B) 8.37 C) 5.43D) 9.92 E) 8.57 2) Consider a solution containing 0.100 M fluoride ions and 0.126 M hydrogen fluoride. The concentration of fluoride ions after the addition of 5.00 mL of 0.0100 M HCl to 25.0 mL of this solution is _____ M. A) 0.0817 B) 0.0850 C) 0.00253 D) 0.00167 E) 0.0980 3) Consider a solution containing 0.100 M fluoride ions and 0.126 M hydrogen fluoride. The concentration of hydrogen fluoride after addition of 5.00 mL of 0.0100 M HCl to 25.0 mL of this solution is _____ M. A) 0.126 B) 0.107 C) 0.00193 D) 0.100 E) 0.00976 4) The K_a of acetic acid is 1.76×10^{-5} . The pH of a buffer prepared by combining 50.0 mL of 1.00 M potassium acetate and 50.0 mL of 1.00 M acetic acid is _____ A) 4.77 B) 1.70 C) 2.38D) 0.85 E) 3.40 5) The K_b of ammonia is 1.77×10^{-5} . The pH of a buffer prepared by combining 50.0 mL of 1.00 M ammonia and 50.0 mL of 1.00 M ammonium nitrate is _____ A) 9.37 B) 9.25 C) 7.00 D) 4.63 E) 4.74 6) Calculate the pH of a solution prepared by dissolving 0.370 mol of formic acid (HCO₂H) and 0.230 mol of sodium formate (NaCO₂H) in water sufficient to yield 1.00 L of solution. The K_a of formic acid is 1.77×10^{-4} . A) 3.54 B) 3.95 C) 10.46 D) 2.09 E) 2.30 7) Calculate the pH of a solution prepared by dissolving 0.750 mol of NH₃ and 0.250 mol of NH₄Cl in water sufficient to yield 1.00 L of solution. The K_b of ammonia is 1.77 \times 10⁻⁴. B) 8.78 C) 0.89 D) 5.22 A) 4.27 E) 9.73 | | | | 50 mol of benzoic acid | | 8) | |--|---------------------------------|--|-------------------------|------------------------------------|-----| | | ` . | H ₅ O ₂) in water suffi | cient to yield 1.00 L o | of solution. The K _a of | | | benzoic acid is 6. | | | | | | | A) 4.41 | B) 2.39 | C) 10.0 | D) 4.19 | E) 3.97 | | | 9) Calculate the pH of a solution prepared by dissolving 0.150 mol of benzoic acid (HBz) and 0.300 mol of sodium benzoate in water sufficient to yield 1.00 L of solution. The K_a of benzoic acid | | | | | 9) | | is 6.50×10^{-5} . | | | | | | | A) 4.49 | B) 4.19 | C) 3.89 | D) 10.1 | E) 2.51 | | | 10) The pH of a solution prepared by dissolving 0.350 mol of solid methylamine hydrochloride (CH ₃ NH ₃ Cl) in 1.00 L of 1.10 M methylamine (CH ₃ NH ₂) is The K _b for methylamine | | | | | 10) | | is 4.40×10^{-4} . | | | | | | | A) 2.86 | B) 1.66 | C) 10.2 | D) 11.1 | E) 10.6 | | | 11) A 25.0 mL sampl | le of 0.723 M HClO ₄ | is titrated with a 0.27 | '3 M KOH solution. V | Vhat is the [H+] | 11) | | (molarity) before | any base is added? | | | | | | A) 1.00×10^{-7} | | | | | | | B) 0.439 | | | | | | | C) 0.273 | | | | | | | D) 2.81 × 10 ⁻¹ | 3 | | | | | | E) 0.723 | | | | | | | 12) A 25.0 mL sampl | le of 0.723 M HClO ₄ | is titrated with a 0.27 | '3 M KOH solution. T | The H ₃ O+ | 12) | | concentration aft | ter the addition of 10 | .0 mL of KOH is | M. | | | | A) 0.440 | | | | | | | B) 0.723 | | | | | | | C) 1.00×10^{-7} | | | | | | | D) 0.273 | | | | | | | E) 2.81×10^{-1} | 3 | | | | | | 13) A 25.0 mL sample of 0.723 M HClO ₄ is titrated with a 0.273 M KOH solution. The H ₃ O+ concentration after the addition of 66.2 mL of KOH is M. | | | | | 13) | | A) 0.439 | | | | | | | B) 2.81 × 10 ⁻¹³ | 3 | | | | | | C) 1.00 × 10 ⁻⁷ | | | | | | | D) 0.273 | | | | | | | E) 0.723 | | | | | | | 14) A 25.0 mL sample of 0.723 M HClO ₄ is titrated with a 0.27 M KOH solution. The H ₃ O+ | | | | | 14) | | |--|--|---------------------------|-----------------------------------|---------------------------|------------|--| | | the addition of 80.0 | mL of KOH is | M. | | | | | A) 0.72 | | | | | | | | B) 2.8 × 10 ⁻¹³ | | | | | | | | C) 3.6×10^{-2} | | | | | | | | D) 0.44 | | | | | | | | E) 1.0×10^{-7} | | | | | | | | 15) The pH of a solution | on prepared by mixin | g 50.0 mL of 0.125 M | KOH and 50.0 mL of | f 0.125 M HCl is | 15) | | | A) 0.00 | B) 6.29 | C) 8.11 | D) 5.78 | E) 7.00 | | | | 16) A 25.0 mL sample of | of an acetic acid solu | tion is titrated with a | 0.175 M NaOH solut | ion. The | 16) | | | | | | led. The concentratio | | , <u> </u> | | | A) 1.83×10^{-4} | | | | | | | | B) 0.119 | | | | | | | | C) 0.263 | | | | | | | | D) 0.365 | | | | | | | | E) 0.175 | | | | | | | | 17) A 50.0 mL sample of | of an aqueous H ₂ SO ₂ | 4 solution is titrated v | with a 0.375 M NaOH | solution. The | 17) | | | equivalence point i
M. | s reached with 62.5 r | nL of the base. The co | oncentration of H ₂ SO | 4 is | | | | A) 0.938 | B) 0.469 | C) 0.150 | D) 0.300 | E) 0.234 | | | | 18) The concentration of iodide ions in a saturated solution of lead (II) iodide is M. The solubility product constant of PbI ₂ is 1.4×10^{-8} . | | | | | 18) | | | A) 1.4×10^{-8} | B) 3.8×10^{-4} | C) 3.5×10^{-9} | D) 1.5 × 10 ⁻³ | E) 3.0×10^{-3} | | | | 19) The solubility of lead (II) chloride (PbCl ₂) is 1.6×10^{-2} M. What is the K _{Sp} of PbCl ₂ ? | | | | | | | | A) 3.1×10^{-7} | B) 4.1×10^{-6} | C) 5.0 × 10 ⁻⁴ | D) 1.6 × 10 ⁻² | E) 1.6 × 10 ⁻⁵ | | | | 20) The solubility of ma (OH) ₂ ? | nganese (II) hydroxi | ide (Mn(OH) ₂) is 2.2 | \times 10 ⁻⁵ M. What is the | e Ksp of Mn | 20) | |---|-----------------------------------|-----------------------------------|--|-------------------------------|-----| | A) 4.8×10^{-10} | | | | | | | B) 1.1 × 10 ⁻¹⁴ | | | | | | | C) 4.3 × 10 ⁻¹⁴ | | | | | | | D) 2.1 × 10 ⁻¹⁴ | | | | | | | E) 2.2 × 10 ⁻⁵ | | | | | | | 21) Determine the K _{sp} f | or magnesium hydr | oxide (Mg(OH)2) wh | nere the solubility of I | Mg(OH) ₂ is 1.4 × | 21) | | $10^{-4} M.$ | | | | | | | A) 3.9×10^{-8} | | | | | | | B) 1.1×10^{-11} | | | | | | | C) 2.7×10^{-12} | | | | | | | D) 2.0×10^{-8} | | | | | | | E) 1.4×10^{-4} | | | | | | | 22) Calculate the maxim of CO ₃ ² The K _{Sp} C | | | Ag+) in a solution tha | t contains 0.025 M | 22) | | A) 8.1 × 10 ⁻¹² | | | | | | | B) 1.8 × 10−5 | | | | | | | C) 3.2 × 10 ⁻¹⁰ | | | | | | | D) 1.4×10^{-6} | | | | | | | E) 2.8×10^{-6} | | | | | | | 23) What is the solubilit | y (in M) of PbCl ₂ in | a 0.15 M solution of | HC1? The K _{sp} of PbC | l ₂ is 1.6 × 10−5. | 23) | | A) 1.6×10^{-5} | B) 2.0×10^{-3} | C) 1.8 × 10 ⁻⁴ | D) 1.1 × 10 ⁻⁴ | E) 7.1×10^{-4} | | | 24) The K _{sp} for Zn(OH)
with a pH of 11.5. | 2 is 5.0×10^{-17} . Deta | ermine the molar sol | ubility of Zn(OH)2 in | a buffer solution | 24) | | A) 1.6×10^{-14} | | | | | | | B) 5.0×10^6 | | | | | | | C) 5.0×10^{-12} | | | | | | D) 5.0 x 10⁻¹⁷ E) 1.2 x 10⁻¹² ## Answer Key Testname: CHAPTER 17 PRACTICE - 1) A - 2) A - 3) B - 4) A 5) B - 6) A - 7) E - 8) E - 9) A 10) D 11) E 12) A - 13) C 14) C - 15) E 16) C 17) E - 18) E - 19) E - 20) C - 21) B 22) B 23) E - 24) C