Test 1

General Chemistry CH116

Summer, 2012

University of Massachusetts,

Boston

Name_____

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

1) Sodium hydride reacts with excess water to produce aqueous sodium hydroxide and hydrogen gas:

NaH (s) + H₂O (l) \rightarrow NaOH (aq) + H₂ (g)

How many grams of NaH will produce 982 mL of gas at 28.0°C and 765 torr, when the hydrogen is collected over water. The vapor pressure of water at this temperature is 28 torr.

2) How much heat is required to heat 10.0 g of ice at -5.00 oC to become liquid water at +7.00 ^oC? In this temperature range, the specific heat of ice is 37.7 J/molK, and the specific heat of H₂O(*I*) is 75.8 J/molK. The molar heat of fusion of ice is 6.01 kJ/mol.

3) A sulfuric acid solution containing 571.6 g of H_2SO_4 per liter has a density of 1.329 g/ cm ³. Calculate the molality of the solution.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

4) A <u>closed-end manometer</u> was attached to a vessel containing argon. The difference in the mercury levels in the two arms of the manometer was 12.2 cm. Atmospheric pressure was 783 mm Hg. The pressure of the argon in the container was mm Hg						
A) 795	B) <u>122</u>	C) 661	D) 771	E) 882		
5) In a Torricelli barometer, a pressure of one atmosphere supports a 760 mm column of mercury. If the original tube containing the mercury is replaced with a tube having twice the diameter of the original, the height of the mercury column at one atmosphere pressure is mm.						
A) 121	B) <u>760</u>	C) 1.52 × 10 ³	D) 4.78 × 10 ³	E) 380		
6) A sample of gas After the compres	initially at 4.00 atm v ssion, the gas pressu	was compressed from & ire was atm	8.00 L to 2.00 L at con n.	istant temperature.	6)	
A) <u>16.0</u>	B) 1.00	C) 8.00	D) 2.00	E) 4.00		
7) If 50.75 g of a gas A) 12.9	occupies 10.0 L at S B) 5.08	TP, 129.3 g of the gas w C) 50.8	/ill occupy D) 3.92	L at STP. E) <u>25.5</u>	7)	
8) A sample of N ₂ gas (2.0 mmol) effused through a pinhole in 5.5 s. It will take s for the same amount of CH4 to effuse under the same conditions						
A) 3.1	B) <u>4.2</u>	C) 5.5	D) 7.3	E) 9.6		
9) Gaseous mixtures A) <u>are all homogeneous</u>						
C) are all heter D) can only cor E) must contai	ogeneous ntain isolated atoms n both isolated atom	is and molecules				
10) The pressure exer	ted by a column of l	iquid is equal to the pr	oduct of the height c	of the column times	10)	

10) The pressure exerted by a column of liquid is equal to the product of the height of the column times the gravitational constant times the density of the liquid, P = ghd. How high a column of water (d = 1.0 g/mL) would be supported by a pressure that supports a 713 mm column of mercury

- (d = 13.6 g/mL)?
 - A) 52 mm
 - B) <u>9.7 × 10³ mm</u>
 - C) 1.2 × 10⁴ mm
 - D) 14 mm
 - E) 713 mm

11) Of the following, A) $\frac{PV = \text{constant}}{P}$ B) $\frac{P}{V} = \text{constant}$ C) $\frac{n}{P} = \text{constant}$ D) $\frac{V}{T} = \text{constant}$ E) $\frac{V}{P} = \text{constant}$	is a correc	t statement of Boyle	e's law.		11)	
12) The volume of an ide	al gas is zero at	·			12)	
A) -273 K	B) 0°C	C) -363 K	D) <u>-273°C</u>	E) -45°F		
13) The molar volume of	a gas at STP is	L.			13)	
A) 14.7	B) <u>22.4</u>	C) 62.36	D) 1.00	E) 0.08206		
 14) Standard temperature and pressure (STP), in the context of gases, refers to A) 273.15 K and 1 pascal B) 298.15 K and 1 atm C) <u>273.15 K and 1 atm</u> D) 298.15 K and 1 torr E) 273.15 K and 1 torr 						
 15) The kinetic-molecular theory predicts that pressure rises as the temperature of a gas increases because A) the gas molecules collide less frequently with the wall B) the average kinetic energy of the gas molecules decreases C) the gas molecules collide more energetically with the wall D) the gas molecules collide more frequently with the wall 						
more energetic	ally with the wall		r the warrand the gas			
 16) A tank containing both HF and HBr gases developed a leak. The ratio of the rate of effusion of HF to the rate of effusion of HBr is A) 4.04 B) 16.3 C) 2.01 D) 0.497 E) 0.247 						
.,	_,	-,	_,	_,		
17) Which one of the foll A) O ₂	owing gases would B) SF ₆	d have the <u>highest</u> a C) N ₂	verage molecular spe D) CO ₂	ed at 25°C? E) <u>CH4</u>	17)	
18) A sample of oxygen gas was found to effuse at a rate equal to two times that of an unknown gas.						
A) 8	B) 8.0	gas is g/ C) 16	D) <u>128</u>	E) 64		

 19) The van der Waals equation for real gases recognizes that A) molar volumes of gases of different types are different B) the molecular attractions between particles of gas decreases the pressure exerted by the gas C) the non-zero volumes of gas particles effectively decrease the amount of "empty space" between them D) gas particles have non-zero volumes and interact with each other E) <u>all of the above statements are true</u> 							
20) Hydrogen bond A) ion-ion in B) London-d C) <u>dipole-di</u> D) ion-dipole E) none of th	ling is a special case of teractions lispersion forces <u>pole attractions</u> e attraction e above				20)		
 21) What type(s) of intermolecular forces exist between Br₂ and CCI₄? A) dispersion forces and ion-dipole B) dispersion forces, ion-dipole, and dipole-dipole C) dispersion forces D) dispersion forces and dipole-dipole E) None. Since both are gases at room temperature, they do not interact with each other. 							
22) Which statemer (i) Viscosity in (ii) Viscosity in (iii) Viscosity in A) (i) only B) (i) and (iii C) (ii) and (iii D) none E) <u>all</u>	nts about viscosity are tru creases as temperature d creases as molecular wei creases as intermolecular) i)	ie? ecreases. ght increases. r forces increase.			22)		
23) Based on the fo	llowing information, whi	ch compound has t	he strongest intermo	lecular forces?	23)		
	Substance Argon (Ar) Benzene (C ₆ H ₆) Ethanol (C ₂ H ₅ OH) Water (H ₂ O) Methane (CH ₄)		ΔH _{vap} (kJ/mol) 6.3 31.0 39.3 40.8 9.2				
A) Benzene	B) Methane	C) Ethanol	D) Argon	E) <u>Water</u>			
24) Large intermole A) low vapor B) high boilin C) high critic D) high heats E) <u>all of the s</u>	ecular forces in a substance pressure ng point cal temperatures and press of fusion and vaporization above	ce are manifested by ssures ion	y		24)		

25) The critical temperature and pressure of CS ₂ are 279°C and 78 atm, respectively. At temperatures						25)	
	above 279°C and press	sures above 78 atr	m, CS ₂ can only occu	ir as a			
	B) gas						
	C) liquid						
	D) <u>supercritical flu</u>	id					
	E) solid						
26)	The vapor pressure of	any substance at	its normal boiling po	pint is		26)	
,	A) equal to the vapo	or pressure of wa	ter			,	
	B) 1 torr						
	C) 1 Pa						
	E) equal to atmospl	heric pressure					
	, , , , ,	·					
27)	Some things take long	er to cook at high	altitudes than at lov	v altitudes because _	·	27)	
	A) water boils at a h	higher temperatur	re at high altitude that	an at low altitude			
	C) heat isn't conduc	ted as well in low	<u>e al nign altitude in</u> / density air	an at low attruce			
	D) there is a higher	moisture content	in the air at high alti	tude			
	E) natural gas flam	es don't burn as h	ot at high altitudes				
28)	When the phase diagr	am for a substanc	e has a solid-liquid i	ohase boundary line	that has a negative	28)	
20)	slope (leans to the left)), the substance _	·		inat has a nogativo		
	A) sublimes rather t	than melts under	ordinary conditions				
	B) <u>can go from soli</u>	<u>d to liquid, withi</u>	in a small temperatu	re range, via the app	lication of		
	<u>pressure</u> C) cannot do from s	solid to liquid by :	application of pressu	ire at any temperatur	2		
	D) melts rather than	n sublimes under	ordinary conditions		<u> </u>		
	E) cannot be liquefi	ied above its triple	e point				
20)	Calculate the freezing	point $(0^{\circ}C)$ of a 0	05500 m aqueous so	lution of alucose. The	molal	20)	
27)	freezing-point-depres	ssion constant of v	water is 1.86°C/m.	fation of glacose. The	FITOIAI	27)	
	A) -0.0562	B) 0.106	C) -0.204	D) <u>-0.102</u>	E) 0.0286		
30)	When argon is placed	in a container of i	neon, the argon spon	taneously disperses t	hroughout the	30)	
	A) of hydrogen bon						
	B) a decrease in ene	ergy occurs when	the two mix				
	C) of the large attra	ctive forces betwe	een argon and neon a	atoms			
	D) the dispersion o	of argon atoms pro	oduces an increase i	<u>n disorder</u>			
	E) OF SOLVENT-SOLUTE						
31)	Which one of the follo	wing substances	would be the most so	bluble in CCI ₄ ?		31)	
	A) NH ₃						
	B) NaCl						
	C) <u>C₁₀H₂₂</u>						
	D) H ₂ O						
	E) CH ₃ CH ₂ OH						

32) The solubility of nitrogen gas at 25°C and 1 atm is 6.8 x 10⁻⁴ mol/L. If the partial pressure of nitrogen gas in air is 0.76 atm, what is the concentration (molarity) of dissolved nitrogen?

A) 1.1 X 10⁻⁵ M B) 6.8 x 10⁻⁴ M C) 4.9 x 10⁻⁴ M D) 3.8 x 10⁻⁴ M E) <u>5.2 x 10⁻⁴ M</u>

33) Of the following, a	0.1 M aqueous solution	on of	will have the lowest fr	eezing point.	33)
A) K ₂ CrO ₄	B) <u>AI(NO3)3</u>	C) Na ₂ SO ₄	D) NaCl	E) sucrose	

32)