A 0.10 $\it M$ solution of formic acid (HCHO $_2$) has a pH of 2.38 at 25°C

(a) Calculate *Ka* for formic acid at this temperature.

$$[H+] = 10^{-2.38} = 4.1686 E-3$$

$$K_a = \frac{[H^+][HCOO^-]}{[HCOOH]}$$

Initial	.1 M	0	0
С	- 4.1686 E-3 M	+ 4.1686 E-3 M	+ 4.1686 E-3 M
E	(O.1- 4.1686 E-3) M	4.1686 E-3 M	4.1686 E-3 M

Taking the dissociation as negligible-

$$K^{a} = \frac{[\text{HCOOH}]}{[\text{H}_{+}][\text{HCOO}_{-}]}$$
 Ka = $\frac{(4.1686 \text{ E}-3)(4.1686 \text{ E}-3)}{0.10}$ = 1.8 E-4

(b) What percentage of the acid is ionized in this 0.10 M solution?

A 0.10 $\it M$ solution of formic acid (HCHO $_2$) has a pH of 2.50 at 25°C

(a) Calculate *Ka* for formic acid at this temperature.

$$pH = -log[H+] = 2.50$$

 $log[H+] = -2.50$

$$[H+] = 10^{-2.50} = 3.16227 E-3$$

$$K_a = \frac{[H^+][HCOO^-]}{[HCOOH]}$$

I	.1 M	0	0
С	- 3.16227 E-3 M	+ 3.16227 E-3 M	+ 3.16227 E-3 M
E	(O.2- 3.16227 E-3) M	3.16227 E-3 M	3.16227 E-3 M

Taking the dissociation as negligible-

(b) What percentage of the acid is ionized in this 0.10 $\it M$ solution?

=
$$(3.16227 E-3/0.10) \times 100 = 3.16 \%$$

A 0.10 $\it M$ solution of formic acid (HCHO $_2$) has a pH of 3.30 at 25°C

a) Calculate Ka for formic acid at this temperature.

pH =
$$-\log [H+] = 3.30$$

log [H+] = -3.30
[H+] = $10^{-3.30} = 5.01187 E-4$

$$K_a = \frac{[H^+][HCOO^-]}{[HCOOH]}$$

1	.1 M	0	0
С	- 5.01187 E-4 M	+ 5.01187 E-4 M	+ 5.01187 E-4 M
E	(O.3- 5.01187 E-4) M	5.01187 E-4 M	5.01187 E-4 M

Taking the dissociation as negligible-

$$K^{a} = \frac{[\text{HCOOH}]}{[\text{H}_{+}][\text{HCOO}_{-}]}$$
 Ka = $\frac{(5.01187 \text{ E}-4)(5.01187 \text{ E}-4)}{0.10}$ = 2.5 E-6

(b) What percentage of the acid is ionized in this 0.10 $\it M$ solution?

A 0.10 $\it M$ solution of formic acid (HCHO₂) has a pH of 3.29999999999998at 25°C

(a) Calculate *Ka* for formic acid at this temperature.

[H+] 10 -3.299999999999999 = 5.0118723362727209E-4

$$K_a = \frac{[H^+][HCOO^-]}{[HCOOH]}$$

.1 M	0	0
- 5.0118723362727209E-4	+	+
M	5.0118723362727209E-	5.0118723362727209E-
	4 M	4 M
(0.4- 5.0118723362727209E-		
4) M	5.0118723362727209E-	5.0118723362727209E-
	4 M	4 M

Taking the dissociation as negligible-

$$K^{a} = \frac{[HCOOH]}{[H_{+}][HCOO_{-}]}$$
 Ka = $\frac{(5.0118723362727209E-4)(5.0118723362727209E-4)}{0.10}$ = 2.5118864315O9578E-6

(b) What percentage of the acid is ionized in this 0.10 $\it M$ solution?