A 0.10 M solution of formic acid $\left(\mathrm{HCHO}_{2}\right)$ has a pH of 2.38 at $25^{\circ} \mathrm{C}$
(a) Calculate Ka for formic acid at this temperature.
$\mathrm{pH}=-\log [\mathrm{H}+]=2.38$
$\log [H+]=-2.38$
$[\mathrm{H}+]=10^{-2.38}=4.1686 \mathrm{E}-3$
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$


| Initial | .1 M | O | 0 |
| :--- | :---: | :---: | :---: |
| C | $-4.1686 \mathrm{E}-3 \mathrm{M}$ | $+4.1686 \mathrm{E}-3 \mathrm{M}$ | $+4.1686 \mathrm{E}-3 \mathrm{M}$ |
| E | $(0.1-4.1686 \mathrm{E}-3) \mathrm{M}$ | $4.1686 \mathrm{E}-3 \mathrm{M}$ | $4.1686 \mathrm{E}-3 \mathrm{M}$ |

Taking the dissociation as negligible-
$\mathrm{K}^{\mathrm{U}}=\frac{[\mathrm{HCOOH}]}{\left[\mathrm{H}_{+}\right]\left[\mathrm{HCOO}_{-}\right]}$

$$
\mathrm{Ka}=\frac{(4.1686 \mathrm{E}-3)(4.1686 \mathrm{E}-3)}{0.10} \quad=1.8 \mathrm{E}-4
$$

(b) What percentage of the acid is ionized in this 0.10 M solution?
$\%$ dissociation $=($ Concentration of $H+/$ concentration of acid $) \times 100$

$$
=(4.1686 \mathrm{E}-3 / 0.10) \times 100=4.16 \%
$$

A 0.10 M solution of formic acid $\left(\mathrm{HCHO}_{2}\right)$ has a pH of 2.50 at $25^{\circ} \mathrm{C}$
(a) Calculate Ka for formic acid at this temperature.
$\mathrm{pH}=-\log [\mathrm{H}+]=2.50$
$\log [H+]=-2.50$
$[\mathrm{H}+]=10^{-2.50}=3.16227 \mathrm{E}-3$
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$


| I | .1 M | O | 0 |
| :--- | :---: | :--- | :--- |
| C | $-3.16227 \mathrm{E}-3 \mathrm{M}$ | $+3.16227 \mathrm{E}-3 \mathrm{M}$ | $+3.16227 \mathrm{E}-3 \mathrm{M}$ |
| E | $(0.2-3.16227 \mathrm{E}-3) \mathrm{M}$ | $3.16227 \mathrm{E}-3 \mathrm{M}$ | $3.16227 \mathrm{E}-3 \mathrm{M}$ |

Taking the dissociation as negligible-
$K^{\mathrm{U}}=\frac{[\mathrm{HCOOH}]}{\left[\mathrm{H}_{+}\right]\left[\mathrm{HCOO}_{-}\right]}$

$$
\mathrm{Ka}=\frac{(3.16227 \mathrm{E}-3)(3.16227 \mathrm{E}-3)}{0.10} \quad=1.0 \times 10^{-4}
$$

(b) What percentage of the acid is ionized in this 0.10 M solution?
$\%$ dissociation $=$ (Concentration of $\mathrm{H}+/$ concentration of acid) $\times 100$

$$
=(3.16227 \mathrm{E}-3 / 0.10) \times 100=3.16 \%
$$

A 0.10 M solution of formic acid $\left(\mathrm{HCHO}_{2}\right)$ has a pH of 3.30 at $25^{\circ} \mathrm{C}$
a) Calculate $K a$ for formic acid at this temperature.
$\mathrm{pH}=-\log [\mathrm{H}+]=3.30$
$\log [H+]=-3.30$
$[\mathrm{H}+]=10^{-3.30}=5.01187 \mathrm{E}-4$
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$


| I | .1 M | 0 | 0 |
| :--- | :---: | :--- | :--- |
| C | $-5.01187 \mathrm{E}-4 \mathrm{M}$ | $+5.01187 \mathrm{E}-4 \mathrm{M}$ | $+5.01187 \mathrm{E}-4 \mathrm{M}$ |
| E | $(0.3-5.01187 \mathrm{E}-4) \mathrm{M}$ | $5.01187 \mathrm{E}-4 \mathrm{M}$ | $5.01187 \mathrm{E}-4 \mathrm{M}$ |

Taking the dissociation as negligible-
$\mathrm{K}^{\mathrm{J}}=\frac{[\mathrm{HCOOH}]}{\left[\mathrm{H}_{+}\right][\mathrm{HCOO}]}$

$$
\mathrm{Ka}=\frac{(5.01187 \mathrm{E}-4)(5.01187 \mathrm{E}-4)}{0.10} \quad=2.5 \mathrm{E}-6
$$

(b) What percentage of the acid is ionized in this 0.10 M
solution?
\% dissociation = (Concentration of $\mathrm{H}+$ /concentration of acid $) \times 100$

$$
=(5.01187 \text { E-4/0.10 ) x } 100=0.50 \%
$$

A 0.10 M solution of formic acid $\left(\mathrm{HCHO}_{2}\right)$ has a pH of 3.2999999999999998 at $25^{\circ} \mathrm{C}$
(a) Calculate Ka for formic acid at this temperature.
$\mathrm{pH}=-\log [\mathrm{H}+]=3.2999999999999998$
$\log [H+]=-3.2999999999999998$
$[\mathrm{H}+] 10-3.2999999999999998=5.0118723362727209 \mathrm{E}-4$
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$
$\mathrm{HCOOH} \rightleftharpoons \mathrm{H}+\quad+\quad \mathrm{HCOO}$

|  | .1 M | 0 | 0 |
| :--- | :--- | :--- | :--- |
|  | $-5.0118723362727209 \mathrm{E}-4$ | + | + |
|  |  | $5.0118723362727209 \mathrm{E}-$ <br> 4 M | $5.0118723362727209 \mathrm{E}-$ <br> 4 M |
|  | $\left(\begin{array}{ll}0.4-5.0118723362727209 \mathrm{E}- \\ 4) \mathrm{M}\end{array}\right.$ | $5.0118723362727209 \mathrm{E}-$ <br> 4 M | $5.0118723362727209 \mathrm{E}-$ <br> 4 M |

Taking the dissociation as negligible-

$$
\begin{aligned}
\mathrm{K}^{』}= & \frac{[\mathrm{HCOOH}]}{\left[\mathrm{H}_{+}\right]\left[\mathrm{HCOO}_{-}\right]} \quad \mathrm{Ka}=\frac{(5.0118723362727209 \mathrm{E}-4)(5.0118723362727209 \mathrm{E}-4)}{0.10} \\
& 2.511886431509578 \mathrm{E}-6
\end{aligned}
$$

(b) What percentage of the acid is ionized in this 0.10 M
solution?
$\%$ dissociation $=($ Concentration of $H+/$ concentration of acid $) \times 100$
$=(5.0118723362727209 \mathrm{E}-4 / 0.10000000000000001) \times 100=$

