Chapter 14, Extra Problem 2. Consider the hypothetical reaction $A_2(g) + 2B(g) + 2C_2(g) \rightarrow 2AC(g) + 2BC(g)$ for which the following kinetic data have been collected.

Exp.	[A ₂], mol/L	[B], mol/L	[C ₂], mol/L	Rate, mol/L·s
1	0.120	0.240	0.120	3.62 x 10 ⁻⁴
2	0.480	0.240	0.120	7.24 x 10 ⁻⁴
3	0.480	0.240	0.360	7.24 x 10 ⁻⁴
4	0.480	0.120	0.240	3.62 x 10 ⁻⁴

(a) Determine the rate law expression for the reaction. (b) Calculate the value of the rate constant, k, with the proper units.

Chapter 14, Extra Problem 3: Consider the hypothetical reaction $A_2(g) + 2B(g) + 2C_2(g) \rightarrow 2AC(g) + 2BC(g)$ for which the experimentally determined rate law has been found to be $Rate = k[A_2]^{\frac{1}{2}}$ [B]. The following two mechanisms have been proposed for this reaction.

Mechanism I:

$$A_2 - 2A$$
 fast equilibrium
 $A + B - AB$ fast equilibrium
 $AB + C_2 - AC + BC$ slow

Mechanism II:

$$A_2 \rightarrow 2A$$
 fast equilibrium
 $A + B \rightarrow AB$ slow
 $AB + C_2 \rightarrow AC + BC$ fast

- (a) Show that both proposed mechanisms are consistent with the overall stoichiometry of the reaction, A₂(g) + 2B(g) + 2C₂(g) → 2AC(g) + 2BC(g).
- (b) What species are reaction intermediates in each mechanism?
- (c) Derive the rate law expression for each mechanism in terms of observable reactant species (A₂, B, and C₂). On the basis of your rate law expressions, which mechanism is more plausible?