Chapter 14:

10^{TH} EDITION:
Chapter 14.1, 14.2, 14.3, 14.4, 14.5, 14.11, 14.13, 14.15, 14.171, 14.19, 14.21, 14.23, 14.27, $14.29,14.31,14.33,14.35,14.37,14.39,14.45,14.49,14.51,14.53,14.55,14.59,14.61,14.63$, 14.65, 14.69, 14.71, 14.75.
$11^{\text {th }}$ Edition:
$1,2,3,4,5,10,13,15,17,19,21,23,25,29,31,3,35,37,37,41,47,51,53,55,57,, 61,63$, 65, 66, 67, 71, 73, 77.

Chapter 14, Extra Problem 1.
The radioactive isotope ${ }_{54} \mathrm{~V}$ decays by beta emission with a half-life of 55 s .
(a) What fraction of a sample of 54 V will remain after 220 s ?
(b) What fraction will remain after 75 s?

Chapter 14, Extra Problem 2
Consider the hypothetical reaction
$\mathrm{A}_{2}(g)+2 \mathrm{~B}(g)+2 \mathrm{C}_{2}(g) \rightarrow 2 \mathrm{AC}(g)+2 \mathrm{BC}(g)$
for which the following kinetic data have been collected.

Exp. [A 2$],$	$\mathrm{mol} / \mathrm{L}[\mathrm{B}]$,	$\mathrm{mol} / \mathrm{L}\left[\mathrm{C}_{2}\right]$,	$\mathrm{mol} / \mathrm{L}$ Rate,	$\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}$
1	0.120	0.240	0.120	$3.62 \times 10-4$
2	0.480	0.240	0.120	$7.24 \times 10-4$
3	0.480	0.240	0.360	$7.24 \times 10-4$
4	0.480	0.120	0.240	$3.62 \times 10-4$

(a) Determine the rate law expression for the reaction.
(b) Calculate the value of the rate constant, k, with the proper units

Chapter 14, Extra Problem 3:
Consider the hypothetical reaction $\mathrm{A}_{2}(g)+2 \mathrm{~B}(g)+2 \mathrm{C}_{2}(g) \rightarrow 2 \mathrm{AC}(g)+2 \mathrm{BC}(g)$
for which the experimentally determined rate law has been found to be Rate $=k\left[\mathrm{~A}_{2}\right]_{1 / 2}[\mathrm{~B}]$. The following two mechanisms have been proposed for this reaction.

Mechanism I:
$\mathrm{A}_{2} \rightarrow 2 \mathrm{~A} \quad$ fast equilibrium
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB} \quad$ fast equilibrium
$\mathrm{AB}+\mathrm{C}_{2} \quad \rightarrow \mathrm{AC}+\mathrm{BC} \quad$ slow

Mechanism II:
$\mathrm{A}_{2} \rightarrow 2 \mathrm{~A}$
fast equilibrium
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$
slow
$\mathrm{AB}+\mathrm{C}_{2} \rightarrow \mathrm{AC}+\mathrm{BC}$
fast
(a) Show that both proposed mechanisms are consistent with the overall stoichiometry of the reaction,
$\mathrm{A}_{2}(g)+2 \mathrm{~B}(g)+2 \mathrm{C}_{2}(g) \rightarrow 2 \mathrm{AC}(g)+2 \mathrm{BC}(g)$.
(b) What species are reaction intermediates in each mechanism?
(c) Derive the rate law expression for each mechanism in terms of observable reactant species ($\mathrm{A}_{2}, \mathrm{~B}$, and C_{2}). On the basis of your rate law expressions, which mechanism is more plausible?

Chapter 15:

$10^{\text {th }}$ Edition:
$15.9,15.11,15.13,15.15,15.17,15.19,15.21,15.23,15.27,15.29,15.31$,
$15.33,15.35,15.37,15.39,15.43,15.45,15.47,15.49,15.51,15.53,15.74$.
$11^{\text {th }}$ Edition:
$1,2,3,4,11,13,15,17,19,21,23,27,29,31,33,35,37,39,43,45,47,49,51,53,60,63,76$, 83.

