Chapter 14

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

1) Consider the following reaction: 1) $3A \rightarrow 2B$ The average rate of appearance of B is given by $\Delta[B]/\Delta t$. Comparing the rate of appearance of B and the rate of disappearance of A, we get $\Delta[B]/\Delta t = ___ \times (-\Delta[A]/\Delta t)$. A) +2/3 B) -2/3 C) -3/2 D) +1 E) +3/2 2) Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction: 2) _____ $2NO_2 \rightarrow 2NO + O_2$ In a particular experiment at 300°C, [NO₂] drops from 0.0100 to 0.00650 M in 100 s. The rate of appearance of O₂ for this period is _____ M/s. A) 7.0×10^{-5} B) 1.8×10^{-5} C) 3.5×10^{-5} D) 7.0×10^{-3} E) 3.5×10^{-3} 3) Which substance in the reaction below either appears or disappears the fastest? 3) $4NH_3 + 7O_2 \rightarrow 4NO_2 + 6H_2O$ A) O₂ B) NH₃ C) H₂O

D) NO₂

E) The rates of appearance/disappearance are the same for all of these.

4) Consider the following reaction:

 $A \rightarrow 2C$

The average rate of appearance of C is given by $\Delta[C]/\Delta t$. Comparing the rate of appearance of C and the rate of disappearance of A, we get $\Delta[C]/\Delta t = ___ \times (\Delta[A]/\Delta t)$.

4) _____

A) +2 B) +1/2 C) -1 D) +1 E) -1/2

A flask is charged with 0.124 mol of A and allowed to react to form B according to the reaction $A(g) \rightarrow B(g)$. The following data are obtained for [A] as the reaction proceeds:

	Time (s)	1	10	20	30	40		
	Moles of A	0.124	0.110	0.088	0.073	0.054		
5) The average rate of dis	appearance of A	betwee	n 10 s ai	nd 20 s i	s	mol/s.		5)
A) 1.1 × 10− ³								
B) 454								
C) 2.2 × 10− ³								
D) 9.90 × 10 ⁻³								
E) 4.4 × 10 ⁻³								
6) The average rate of dis	appearance of A	betwee	n 20 s ai	nd 40 s i	s	mol/s.		6)
A) 590	B) 7.1 × 10−3	C)	1.7 × 10	-3	D) 8.	.5 × 10-4	E) 1.4 × 10− ³	
7) The average rate of app	pearance of B betw	ween 2() s and 3	30 s is _		mol/s.		7)
A) +7.3 × 10 ^{−3}								·
B) +1.5 × 10− ³								
C) −7.3 × 10 ^{−3}								
D) +5.0 × 10 ⁻⁴								
E) -1.5×10^{-3}								
8) The average rate disap	pearance of A bet	ween 2	0 s and	30 s is _		mol/s.		8)
A) 1.6 × 10 ⁻²								
B) 0.15								
C) 670								
D) 1.5 × 10 ⁻³								
E) 5.0 × 10-4								

A flask is charged with 0.124 mol of A and allowed to react to form B according to the reaction $A(g) \rightarrow B(g)$. The following data are obtained for [A] as the reaction proceeds:

	Time (s)	1	10	20	30	40		
	Moles of A	0.124	0.110	0.088	0.073	0.054		
9) How many moles	s of B are present at 10) s?						9)
A) 0.220	B) 0.110	C)	0.011		D) 0.	014	E) 1.4 × 10 ⁻³	-)
10) How many moles	s of B are present at 30) s?						10)
A) 1.7 × 10−3	B) 2.4 × 10−3	C)	0.15		D) 0.	073	E) 0.051	

The peroxydisulfate ion $(S_2O_8^{2-})$ reacts with the iodide ion in aqueous solution via the reaction:

 $S_2O_8^{2-}(aq) + 3I^- \rightarrow 2SO_4(aq) + I3^-(aq)$

An aqueous solution containing 0.050 M of $S_2O_8^{2-}$ ion and 0.072 M of I⁻ is prepared, and the progress of the reaction followed by measuring [I⁻]. The data obtained is given in the table below.

Time (s)	0	400	800	1200	1600
[I-] (M)	0.072	0.057	0.046	0.037	0.029

11) The average rate of o	s is M/s.		11)		
A) 2.6 × 10 ⁻⁴	B) 1.4 × 10 ^{−5}	C) 5.8 × 10 ^{−5}	D) 3.6 × 10 ⁴	E) 2.8 × 10 ⁻⁵	
12) The average rate of o	disappearance of I in	the initial 400 s is	M/s.		12)
A) 3.2 × 10 ⁻⁴	B) 1.4 × 10 ⁻⁴	C) 2.7 × 10^4	D) 3.8 × 10 ⁻⁵	E) 6.00	
13) The average rate of a	disappearance of I be	tween 1200 s and 160	0 s is M/s.		13)
A) 2.0 × 10 ^{−5}	B) 1.6 × 10 ⁻⁴	C) 1.2 × 10 ^{−5}	D) 1.8 × 10 ⁻⁵	E) 5.0 × 10^4	·
14) The concentration of	$S_2O_8^2$ - remaining a	t 400 s is	М.		14)
A) +0.045	B) +0.057	C) +0.015	D) +0.035	E) -0.007	
15) The concentration of	$5_2O_8^2$ - remaining a	t 800 s is	M.		15)
A) 0.046					
B) 0.015					
C) 4.00 × 10−3					
D) 0.041					
E) 0.076					
16) The concentration of	$5_2O_8^2$ - remaining a	at 1600 s is	_M.		16)
A) 0.014	B) 0.043	C) 0.029	D) 0.064	E) 0.036	

17) At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen

17) _____

19) _____

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

When the rate of formation of NO₂ is 5.5×10^{-4} M/s, the rate of decomposition of N₂O₅ is

M/s. A) 10.1 × 10⁻⁴ B) 2.8 × 10⁻⁴ C) 1.4 × 10⁻⁴ D) 2.2 × 10⁻³ E) 5.5 × 10⁻⁴

 18) At elevated temperatures, methylisonitrile (CH3NC) isomerizes to acetonitrile (CH3CN):
 18)

 $CH_3NC(g) \rightarrow CH_3CN(g)$

At the start of an experiment, there are 0.200 mol of reactant and 0 mol of product in the reaction vessel. After 25 min, 0.108 mol of reactant (CH₃NC) remain. There are _____ mol of product (CH₃CN) in the reaction vessel.

A) 0.540	B) 0.092	C) 0.022	D) 0.200	E) 0.308

19) At elevated temperatures, methylisonitrile (CH3NC) isomerizes to acetonitrile (CH3CN):

 $CH_3NC(g) \rightarrow CH_3CN(g)$

At the start of the experiment, there are 0.200 mol of reactant (CH₃NC) and 0 mol of product (CH₃CN) in the reaction vessel. After 25 min of reaction, 0.108 mol of reactant (CH₃NC) remain. The average rate of decomposition of methyl isonitrile, CH₃NC, in this 25 min period is _____ mol/min.

A) 0.092 B) 2.3 C) 0.54 D) 4.3×10^{-3} E) 3.7×10^{-3}

20) A reaction was found to be second order in carbon monoxide concentration. The rate of the reaction 20) _________ if the [CO] is doubled, with everything else kept the same.

A) doubles

B) increases by a factor of 4

C) triples

D) remains unchanged

E) is reduced by a factor of 2.

21) If the rate law for the reaction

 $2A + 3B \rightarrow \text{products}$

A) k[A] ² [B] ³		, unch unc rate law 15	rate =		
	B) k[A] ² [B] ²	C) k[A] ² [B]	D) k[A][B] ²	E) k[A][B]	
22) The overall order	of a reaction is 2. The	units of the rate cons	stant for the reaction	are .	22)
A) M/s	B) 1/s	C) s/M ²	D) M-1s-1	E) 1/M	/
23) The kinetics of th increased by a fac in B.	e reaction below were ctor of 9 when the conc	studied and it was d entration of B was tr	etermined that the re ripled. The reaction is	eaction rate 5order	23)
A + B -	→ P				
A) zero	B) first	C) second	D) third	E) one-half	
24) The kinetics of th change when the	e reaction below were concentration of B was	studied and it was d s tripled. The reaction	etermined that the re n is order	eaction rate did not r in B.	24)
A + B -	→ P				
A) zero	B) first	C) second	D) third	E) one-half	
25) A reaction was fo cause the reactior	ound to be third order i n rate to	n A. Increasing the c	concentration of A by	a factor of 3 will	25)
A) triple					
B) remain cons	stant				
C) decrease by	a factor of the cube ro	ot of 3			
D) increase by	a factor of 27				
E) increase by	a factor of 9				
		A Increasing the co	oncentration of A by	a factor of 3 will	26)
26) A reaction was fo cause the reaction	ound to be zero order in n rate to	TA: mereasing the e			/
26) A reaction was fo cause the reactior A) triple	ound to be zero order in nate to	Tr. increasing the o			,
26) A reaction was fo cause the reaction A) triple B) decrease by	ound to be zero order in nate to	ot of 3			,
26) A reaction was for cause the reactionA) tripleB) decrease byC) increase by	ound to be zero order in n rate to r a factor of the cube roo a factor of 27	ot of 3			,
26) A reaction was for cause the reactionA) tripleB) decrease byC) increase byD) remain construction	ound to be zero order in n rate to r a factor of the cube roo a factor of 27 stant	ot of 3			,

21) _____

The data in the table below were obtained for the reaction:

 $A + B \rightarrow P$

Experiment Number 1 2 3	[A] (M) [0.273 0.273 (0.819 (Initial Rat B] (M) (M/s) 0.763 2.83 1.526 2.83 0.763 25.47	te 			
27) The order of	of the reaction	on in A is				27)
A) 1		B) 2	C) 3	D) 4	E) 0	
28) The order o	of the reaction	on in B is	·			28)
A) 1		B) 2	C) 3	D) 4	E) 0	
29) The overall	l order of th	e reaction is				29)
A) 1		B) 2	C) 3	D) 4	E) 0	
30) For a first-	order reacti	on, a plot of	versus	is linear.		30)
A) In [A]	$l_t \frac{1}{t}$	B) t, $\frac{1}{[A]_t}$	C) [A] _t , t	D) ln [A] _t , t	E) $\frac{1}{[A]_t}$, t	
31) The following reaction occurs in aqueous solution: $NH_4^+(aq) + NO_2^- \rightarrow N_2(g) + 2H_2O(l)$ The data below is obtained at 25°C.						31)
	NH4+] (M)	[NO ₂ -] (M)	Initial rate (M/s)			
	0.0100 0.0200	0.200 0.200	3.2 × 10 ⁻³ 6.4 × 10 ⁻³			
The order of	of the reaction	on in NH4+ is	·			
A) -1		B) 0	C) +1	D) +2	E) –2	
32) The rate constant for a particular second-order reaction is $0.47 \text{ M}^{-1}\text{s}^{-1}$. If the initial concentration of reactant is 0.25 mol/L it takes						32)
A) 1.7		B) 7.9	 C) 0.13	D) 1.4	E) 3.7	
33) A first-ord concentrati	er reaction l ion to decrea	has a rate constar ase from 0.13 M t	nt of 0.33 min ⁻¹ . It ta o 0.088 M.	akes min f	or the reactant	33)
A) 1.4		B) 0.13	C) 1.2	D) 0.85	E) 0.51	

34) The initial concentration of reactant in a first–order reaction is 0.27 M. The rate constant for the reaction is 0.75 s ⁻¹ . What is the concentration (mol/L) of reactant after 1.5 s?								
A) 3.8	B) 0.135	C) 8.8 × 10 ⁻²	D) 2.0 × 10 ⁻²	E) 1.7				
35) The rate constant for a second-order reaction is $0.13 \text{ M}^{-1}\text{s}^{-1}$. If the initial concentration of reactant is 0.26 mol/L, it takes s for the concentration to decrease to 0.13 mol/L.								
A) 0.50	B) 1.0	C) 30	D) 0.017	E) 4.4 × 10 ⁻³				
36) The half-life of a first-order reaction is 13 min. If the initial concentration of reactant is 0.085 M, it takes min for it to decrease to 0.055 M.								
A) 8.4	B) 3.6	C) 11	D) 0.048	E) 8.2				
37) The graph shown chemical reaction	n below depicts the re n.	elationship between co	ncentration and time	for the following	37)			
ln [A]	time							
The slope of this	line is equal to	·	D) 1/l.	T) 1.				
A) -1/K	Б) К	C) $\ln[A]_0$	D) 1/K	Е) –К				
38) The reaction belo	ow is first order in [H	2O2]:			38)			
2H ₂ O ₂	$(l) \rightarrow 2H_2O(l) + O_2$	(g)						
A solution origir reaction is	nally at 0.600 M H ₂ O ₂ min.	is found to be 0.075 M	after 54 min. The ha	lf-life for this				
A) 14	B) 54	C) 18	D) 6.8	E) 28				
39) A second-order . The rate constan	reaction has a half–lif t for this reaction is _	e of 18 s when the initi M ⁻¹ s ⁻¹ .	al concentration of re	actant is 0.71 M.	39)			
A) 1.3	B) 18	C) 7.8 × 10 ⁻²	D) 2.0 × 10 ⁻²	E) 3.8 × 10 ⁻²				

Answer Key Testname: CHAPTER 14.PRACTICE QUESTIONSTST

2) B 3) A 4) A 5) C 6) C 7) B 8) D 9) D 10) E 11) E 12) D 13) A 14) A 15) D 16) E 17) B 18) B 19) E 20) B 21) D 22) D 23) C 24) A 25) D 26) D 27) B 28) E 29) B 30) D 31) C 32) B 33) C 34) C 35) C 36) E 37) E 38) C

1) A