CHEM 103
Stoichiometry

Lecture Notes
February 16, 2006
Prof. Sevian

Agenda

- A money analogy for moles
- Determining empirical formula from % composition of a compound
- The sandwich problem, the bicycle problem, and how they’re related to chemical reactions
- Limiting reagent problems
- Combustion analysis
Announcements

- First exam is on Thursday, Feb 23.
- One-third of the class will be in an overflow room. I will announce who takes the exam where on Tuesday, and will also post on the course website.
- To be posted on the course website by Saturday:
 - Practice exam #1 (already there)
 - Answer key to practice exam #1
 - Study guide
- Bookstore says the ACS exam study guide (~$12) will be in by Friday.

Moles like Money

Widget factory

Widget
save 12¢ per widget made

Factory makes 1,000,000 widgets per day. How much money do you save per day?

One acetic acid molecule has 4 atoms of H

One mole (6.022 × 10^23 molecules) of acetic acid molecules. How many moles of H atoms are in it?
Scaling molecules to moles

Mass of one molecule of CH$_3$COOH is 60.05 amu

Mass of 1 mole of CH$_3$COOH molecules is 60.05 grams

Important note: Since there is always the same number of particles in a mole, when you determine the amu’s of a unit, you are determining the mass in grams of a mole of that unit.

What does % composition mean?

% Composition by Mass

\[
\begin{align*}
fraction \ C &= \frac{2 \times 12}{60} = 40\% \\
frac{\text{fraction}}{\text{H}} &= \frac{4 \times 1}{60} = 6.7\% \\
fraction \ O &= \frac{2 \times 16}{60} = 53\%
\end{align*}
\]

Note: These are approximate atomic masses, for the purpose of demonstrating % composition. When actually calculating % composition, use the values from the Periodic Table.
What does % composition mean?

Acetic Acid: Percent Composition by Mass

- C: 40.0%
- H: 6.7%
- O: 53.3%

Composition of a Compound

What is the composition by mass of acetic acid (CH₃COOH)?

- %C = \(\frac{24.02}{60.05} \times 100\% = 40.00\% \)
- %H = \(\frac{4.032}{60.05} \times 100\% = 6.714\% \)
- %O = \(\frac{32.00}{60.05} \times 100\% = 53.29\% \)

Check: 40.00 + 6.714 + 53.29 = 100.00%

Recall from earlier:
Molar mass = 60.05 g/mol
Composition of a Hydrated Compound

Heating barium chloride dihydrate (BaCl₂•2H₂O) drives off the water, leaving the anhydrous compound (BaCl₂). The chemical reaction is

$$\text{BaCl}_2\cdot2\text{H}_2\text{O (s)} \rightarrow \text{BaCl}_2 (s) + 2 \text{H}_2\text{O (g)}$$

If you begin with a 10.0 g sample of the hydrated compound, what mass of water will be lost?

$$\%\text{H}_2\text{O} = \frac{2 \times 18.02}{244.2} \times 100\% = 7.379\%$$

mass of H₂O in sample = 7.379% of 10.0 g

$$= 0.07379 \times 10.0\text{g}$$

$$= 0.738\text{g}$$

Formula weight = 244.2 g/mol

Chemical Compounds and Mass

- Chemical formula to percent composition
 - Need to determine parts and whole
 - Use definition of percent
- Going the other direction
 - Percent composition alone is not enough information to determine molecular formula

C₂H₄ C₄H₈ C₆H₁₂

All three of these have 14.37% H and 85.63% C by mass
Empirical Formula

Lowest whole number ratio of elements in a chemical formula

<table>
<thead>
<tr>
<th>Chemical formula</th>
<th>Empirical formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂H₄</td>
<td>CH₂</td>
</tr>
<tr>
<td>C₄H₈</td>
<td>CH₂</td>
</tr>
<tr>
<td>C₆H₁₂</td>
<td>CH₂</td>
</tr>
<tr>
<td>C₆H₁₂O₆</td>
<td>CH₂</td>
</tr>
<tr>
<td>Na₂C₂O₄</td>
<td></td>
</tr>
<tr>
<td>CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>H₂O₂</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td></td>
</tr>
</tbody>
</table>

Chemical Compounds and Mass

- Chemical formula to percent composition

 Ratio of moles → Percent by mass

- Percent composition (or relative masses) to empirical formula

 Percent by mass → Ratio of moles
What does % composition mean?

Acetic Acid: Percent Composition by Mass

O 53.3%
C 40.0%
H 6.7%

% Composition to Empirical Formula

Analysis of a particular compound shows that it is composed of X% carbon, Y% hydrogen, and Z% oxygen. What is the compound’s empirical formula?

\[
\frac{X \text{ grams}}{100 \text{ grams}} \text{ are carbon} \quad \Rightarrow \quad \frac{Y \text{ grams}}{100 \text{ grams}} \text{ are hydrogen} \quad \Rightarrow \quad \frac{Z \text{ grams}}{100 \text{ grams}} \text{ are oxygen}
\]

\[
\text{specific whole number ratio of moles C : moles H : moles O is} \quad a : b : c
\]

\[
\text{empirical formula is} \quad C_aH_bO_c
\]
% Composition to Empirical Formula

Analysis of a particular compound shows that it is composed of 73.14% carbon, 7.37% hydrogen, and the remainder is oxygen. What is the compound’s empirical formula?

\[
\begin{align*}
73.14 \text{ g C} \times \frac{1 \text{ mol C}}{12.01 \text{ g}} &= 6.089 \text{ mol C} \\
7.37 \text{ g H} \times \frac{1 \text{ mol H}}{1.008 \text{ g}} &= 7.31 \text{ mol H} \\
19.49 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g}} &= 1.218 \text{ mol O}
\end{align*}
\]

Specific whole number ratio of moles C : moles H : moles O is \(6.089 : 7.31 : 1.218\)

\[
\frac{6.089}{6.089} : \frac{7.31}{6.089} : \frac{1.218}{6.089} = 1 : 1.200 : 0.2000
\]

\(= 5 : 6 : 1\)

so, empirical formula is \(\text{C}_2\text{H}_6\text{O}_1\)

Variations on Determining Empirical Formula

- Start with % composition of elements in a compound
- Start with masses of elements in a compound
- Start with % or masses of parts of a hydrated compound (e.g., determine \(n\) in \(\text{CuSO}_4 \cdot n\text{H}_2\text{O}\), given mass of \(\text{CuSO}_4\) and mass of \(\text{H}_2\text{O}\) lost when compound is heated)
How to get to Molecular Formula

- A hydrocarbon has 85.63% carbon by mass. What is its empirical formula?
 \[\text{CH}_2 \]

- What else do you need to know to determine molecular formula?

 (All three have 14.37% H and 85.63% C by mass)

How many empirical formulas?

Empirical Unit \(\text{CH}_2 \)
Mass is \(12.01 + 2(1.008) = 14.03 \text{ g/mol}\)

\[
\begin{align*}
\text{C}_2\text{H}_4 & \quad 2 \times (\text{CH}_2) = 2 \times (14.03) = 28.06 \text{ g/mol} \\
\text{C}_4\text{H}_8 & \quad 4 \times (\text{CH}_2) = 4 \times (14.03) = 56.12 \text{ g/mol} \\
\text{C}_6\text{H}_{12} & \quad 6 \times (\text{CH}_2) = 6 \times (14.03) = 84.18 \text{ g/mol}
\end{align*}
\]
Chemical Equations

- Represent a chemical change of matter
- Reactants (starting materials) on left
- Products (ending materials) on right

Reactants \rightarrow Products

- What goes in must come out, just connected (bonded) differently

Formation of Water

\[2 \text{H}_2 (g) + \text{O}_2 (g) \rightarrow 2 \text{H}_2\text{O} (l) \]

Coefficients: 2, 1, 2
Combustion of propane

\[
\begin{align*}
\text{H}_3\text{C} &= \text{H} - \text{C} - \text{H} \\
&\quad + \text{O} = \text{O} - \text{O} - \text{O} \\
&\quad \quad + \text{O} = \text{O} - \text{O} - \text{O} \\
\text{H} &= \text{H} - \text{C} - \text{H} - \text{H} - \text{H} \\
&\quad + \text{O} = \text{O} - \text{O} - \text{O} \\
&\quad \quad + \text{O} = \text{O} - \text{O} - \text{O} \\
\text{H} &= \text{H} - \text{C} - \text{H} - \text{H} - \text{H} - \text{H} \\
&\quad + \text{O} = \text{O} - \text{O} - \text{O} \\
&\quad \quad + \text{O} = \text{O} - \text{O} - \text{O}
\end{align*}
\]

1. Balance the Carbons
2. Balance the Hydrogens
3. Balance the Oxygens
4. Is it balanced?

Balanced chemical equation:

\[
\text{C}_3\text{H}_8 + 5 \text{O}_2 \rightarrow 3 \text{CO}_2 + 4 \text{H}_2\text{O}
\]
When the balancing units are ions, not atoms

\[
\text{CuSO}_4 + \text{Na}_3\text{PO}_4 \rightarrow \text{Cu}_3(\text{PO}_4)_2 + \text{Na}_2\text{SO}_4
\]

\[
3 \text{CuSO}_4 + 2 \text{Na}_3\text{PO}_4 \rightarrow \text{Cu}_3(\text{PO}_4)_2 + 3 \text{Na}_2\text{SO}_4
\]

Stoichiometry

- “Counting atoms"
- Quantitative part of chemistry
- Foundation is conservation of matter
- Must use balanced chemical equations
- Reaction coefficients (also called stoichiometric coefficients) tell you how many units of a chemical are required, compared to units of other chemicals in the reaction
- We can’t measure units in the laboratory (we measure mass, volume, etc.)
An Example from Real Life

Chocolate chip cookie recipe calls for:
- 3 eggs
- 1 cup brown sugar
- 2 cups flour
- Some other stuff
Produces: 64 cookies

What if you want to make 48 cookies?
But in the laboratory you cannot count atoms or molecules or ionic units…

Simple Stoichiometry

What mass of carbon dioxide gas is produced when 227 grams of propane (C₃H₈) combust completely?

Balanced chemical equation:

\[\text{C}_3\text{H}_8 + 5 \text{O}_2 \rightarrow 3 \text{CO}_2 + 4 \text{H}_2\text{O} \]

Start

<table>
<thead>
<tr>
<th>227 g C₃H₈</th>
<th>1 mol C₃H₈</th>
<th>3 mol CO₂</th>
<th>44.01 g CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.09 g C₃H₈</td>
<td>1 mol C₃H₈</td>
<td>1 mol CO₂</td>
<td></td>
</tr>
</tbody>
</table>

End

679.76 g CO₂

680. g CO₂
General Strategy for Simple Stoichiometry Problems

Types of Stoichiometry Problems

- **Simple stoichiometry**: Mass of one chemical (reactant or product) is specified. Find out mass of another chemical required or produced in the reaction (assuming just enough of each reactant is present). Must use a balanced chemical equation.

- **Chemical analysis**: Known and unknown chemicals or quantities given. Figure out unknown chemicals or quantities.

- **Limiting reagent**: Masses of two different reactants are specified. One of the reactants limits the reaction (it gets used up first). Figure out the maximum mass of a product that could be formed if all of the limiting reactant is used up. Must use a balanced chemical equation.
A Simple Stoichiometry Problem

If solutions containing calcium chloride and silver nitrate are combined, white silver chloride crystals precipitate out of the mixture, and the remaining solution contains calcium nitrate.

(a) Write the balanced chemical equation for this reaction.

(b) If 0.252 g of calcium chloride were present in the original calcium chloride solution, how many grams of silver chloride should be formed (assuming there is enough silver nitrate)?

Writing the Chemical Equation

If solutions containing calcium chloride and silver nitrate are combined, white silver chloride crystals precipitate out of the mixture, and the remaining solution contains calcium nitrate.

(a) Write the balanced chemical equation for this reaction.

Reactants → Products
Writing the Chemical Equation

If solutions containing calcium chloride and silver nitrate are combined, white silver chloride crystals precipitate out of the mixture, and the remaining solution contains calcium nitrate.

(a) Write the balanced chemical equation for this reaction.

\[
\text{Reactants} \rightarrow \text{Products}
\]

\[
\text{CaCl}_2 \ (aq) + \text{AgNO}_3 \ (aq) \rightarrow \text{AgCl} \ (s) + \text{Ca(NO}_3)_2 \ (aq)
\]
Balancing the Chemical Equation

(a) Write the balanced chemical equation for this reaction.

What are the units that remain constant on both sides of the arrow? That is, what goes in and comes out unchanged?

\[\text{CaCl}_2 + 2 \text{AgNO}_3 \rightarrow 2 \text{AgCl} + \text{Ca(NO}_3)_2 \]

The Stoichiometry Part

(b) If 0.252 g of calcium chloride were present in the original calcium chloride solution, how many grams of silver chloride should be formed?

\[
\begin{align*}
\text{Start} & \quad \text{End} \\
0.252 \text{ g CaCl}_2 & \quad 1 \text{ mol CaCl}_2 & 2 \text{ mol AgCl} & \quad 143.4 \text{ g AgCl} & = 0.651 \text{ g AgCl} \\
110.98 \text{ g CaCl}_2 & \quad 1 \text{ mol CaCl}_2 & 1 \text{ mol AgCl} & & \end{align*}
\]
Quantitative Analysis

- Determine the composition of a mixture
 - React one substance in the mixture according to a known reaction.
 - Measure results of reaction.
 - Use stoichiometry to determine how much of original substance was present.
- Determine the empirical formula of an unknown chemical
 - React the substance and measure amounts of different chemical products.
 - Use stoichiometry to determine moles of elements present in original sample.
 - Find empirical formula from ratio of moles.

Composition of a Mixture

- Products of the reaction must be known
- If you can measure the mass of one of the products, then you can use stoichiometry to determine how much of the original reactant was present
- Examples: product is a gas or precipitate
Example: Gravimetric Analysis

A mixture of unknown percentage composition of white BaCl₂•2H₂O crystals and white Na₂SO₄•10H₂O crystals is provided. How could you determine the percent composition of the mixture?

1. How could you get a reaction to occur?
2. What reaction would occur?
3. What would you need to measure?
4. How would you measure it?
5. What information could you calculate by knowing that?
6. What additional information might you need?

Limiting Reactants

- If you use an excess of one reactant, it is more likely that all of the other reactant will be used up in the chemical reaction.
- The reactant that is in excess will be present in the final products, since it didn’t all get used up.
An analogy to illustrate limiting reactants

To build a semi tractor-trailer requires:

18 wheels + 5 axles + 4 cylinders + 1 pigeon → 1 semi

Let’s say you have in stock:

- 198 wheels
- 100 axles
- 100 cylinders
- 18 pigeons

How many semis could you produce?

Maximum quantity of semis you could produce is 11

LIMITING REACTANT

11756450

Initial

<table>
<thead>
<tr>
<th>18 wheels</th>
<th>5 axles</th>
<th>4 cylinders</th>
<th>1 pigeon</th>
<th>→</th>
<th>1 semi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>198</td>
<td>100</td>
<td>100</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>-198</td>
<td>-(11×5)</td>
<td>-(11×4)</td>
<td>-(11×1)</td>
<td>+11</td>
</tr>
<tr>
<td>Final</td>
<td>0</td>
<td>45</td>
<td>56</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>
What was actually in the barium chloride + sodium sulfate mixture

\[\text{BaCl}_2 \text{ (aq) + Na}_2\text{SO}_4 \text{ (aq) } \rightarrow 2 \text{NaCl (aq) + BaSO}_4 \text{ (s)} \]

\[
\begin{align*}
5.00g \text{BaCl}_2 \cdot 2\text{H}_2\text{O} \times \frac{1 \text{ mol} \text{BaCl}_2 \cdot 2\text{H}_2\text{O}}{244.2g \text{BaCl}_2 \cdot 2\text{H}_2\text{O}} = 0.0205 \text{ mol BaCl}_2 \\
5.00g \text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O} \times \frac{1 \text{ mol} \text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}}{322.3g \text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}} = 0.0155 \text{ mol Na}_2\text{SO}_4
\end{align*}
\]

<table>
<thead>
<tr>
<th>moles</th>
<th>BaCl₂</th>
<th>Na₂SO₄</th>
<th>→</th>
<th>2 NaCl</th>
<th>BaSO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.0205</td>
<td>0.0155</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>-0.0155</td>
<td>-0.0155</td>
<td></td>
<td>+2(0.0155)</td>
<td>+0.0155</td>
</tr>
<tr>
<td>Final</td>
<td>0.0050</td>
<td>0</td>
<td>0.0310</td>
<td>0.0155</td>
<td></td>
</tr>
</tbody>
</table>

Chemical Analysis

1. Unknown quantity of a known substance
 - Two known chemicals react to exactly the point of completion
 - Quantity of one of them is known
 - Determine quantity that must have been present of the other one
 - Example: titration

2. Known quantity of an unknown substance
 - A specific amount of an unknown substance reacts
 - Known products are formed, and their quantities are measured
 - Determine empirical formula of the unknown reactant from this information
 - Examples: gravimetric analysis, combustion analysis
Combustion Analysis

Unbalanced reaction is
Sample (containing C, H, and O) + O₂ → H₂O + CO₂
- Excess O₂ used, so that all of the sample reacts
- CuO ensures that any carbon monoxide converts to carbon dioxide
- Water absorber is usually Mg(ClO₄)₂
- Carbon dioxide is usually collected by sodium hydroxide on asbestos

Picture from http://itl.chem.ufl.edu/2045_s00/lectures/lec_4.html

Combustion Analysis

Known mass of sample reacts
Mass of H₂O is measured
Mass of CO₂ is measured

Mass of H₂O → Moles of H₂O → Moles of H atoms present in original sample
Mass of CO₂ → Moles of CO₂ → Moles of C atoms present in original sample

(Mass of original sample) − (Mass of H atoms + Mass of C atoms)

= Mass of O atoms, if present in original sample

→ Moles of O atoms present in original sample
Combustion Analysis Example

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.

(a) What is the empirical formula for butane?

(b) A different analytical procedure indicated that 9.153×10^{-3} moles of butane were present in the original sample of butane. What is the molecular formula for butane?

Chemical reaction is

butane + O$_2$ \rightarrow CO$_2$ + H$_2$O

Strategy:
- Empirical formula means ratio of moles
- Need to know moles of C, moles of H (and possibly moles of O)
- Get moles of C from mass of CO$_2$
- Get moles of H from mass of H$_2$O
- Get moles of O (if any) by determining if C and H account for entire mass of butane
- Determine empirical formula of butane from ratio of moles C:H:(O)
Combustion Analysis Example

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.
(a) What is the empirical formula for butane?

Start

\[
\begin{array}{ccc}
1.6114 \text{ g CO}_2 & 1 \text{ mol CO}_2 & 1 \text{ mol C} \\
44.011 \text{ g CO}_2 & 1 \text{ mol CO}_2 & \\
\end{array}
\]

End

\[
\begin{array}{ccc}
= & 0.036614 \text{ mol C} \\
\end{array}
\]

Start

\[
\begin{array}{ccc}
0.8247 \text{ g H}_2\text{O} & 1 \text{ mol H}_2\text{O} & 2 \text{ mol H} \\
18.02 \text{ g H}_2\text{O} & 1 \text{ mol H}_2\text{O} & \\
\end{array}
\]

End

\[
\begin{array}{ccc}
= & 0.09153 \text{ mol H} \\
\end{array}
\]

Combustion Analysis Example

The combustion of 0.5320 g butane (in a lighter) produces 0.4028 g of carbon dioxide and 0.8243 g of water.
(a) What is the empirical formula for butane?

Is there any O in butane?

\[
\begin{array}{ccc}
0.036614 \text{ mol C} & 12.011 \text{ g C} & 0.43973 \text{ g C} \\
1 \text{ mol C} & & \\
\end{array}
\]

Sum is 0.5320 g

\[
\begin{array}{ccc}
0.09153 \text{ mol H} & 1.008 \text{ g H} & 0.09226 \text{ g H} \\
1 \text{ mol H} & & \\
\end{array}
\]
Combustion Analysis Example

The combustion of 0.5320 g butane (in a lighter) produces 0.4028 g of carbon dioxide and 0.8243 g of water.

(a) What is the empirical formula for butane?

\[
\begin{align*}
\text{Ratio of Moles C : Moles H} &= \frac{0.036614 \text{ mol C}}{0.09153 \text{ mol H}} = 1 : 2.5 = 2 : 5 \\
\text{Empirical formula is } C_2H_5
\end{align*}
\]

Combustion Analysis Example

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.

(b) A different analytical procedure indicated that \(9.153 \times 10^{-3}\) moles of butane were present in the original sample of butane.
What is the molecular formula for butane?

Strategy:
- Start with empirical formula from part (a)
- Use mass and moles to calculate molar mass of butane
- Find out how many empirical units are in butane
- Molecular formula of butane is same factor \(\times\) empirical formula
Combustion Analysis Example

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.
(b) A different analytical procedure indicated that 9.153×10^{-3} moles of butane were present in the original sample of butane. What is the molecular formula for butane?

Molar mass is measured in g/mol

\[
\text{Molar mass of butane} = \frac{0.5320 \text{ g butane}}{9.153 \times 10^{-3} \text{ moles of butane}} = 58.12 \text{ g/mol}
\]

Combustion Analysis Example

The combustion of 0.5320 g butane (in a lighter) produces 1.6114 g of carbon dioxide and 0.8247 g of water.
(b) A different analytical procedure indicated that 9.153×10^{-3} moles of butane were present in the original sample of butane. What is the molecular formula for butane?

<table>
<thead>
<tr>
<th>Empirical</th>
<th>Molecular</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_2\text{H}_5)</td>
<td>(\text{C}4\text{H}{10})</td>
</tr>
<tr>
<td>29.06 g/mol</td>
<td>58.12 g/mol</td>
</tr>
</tbody>
</table>