These questions are based on the following article:

1. (1 point) Draw *cis*-decalin and *trans*-decalin (bond-line drawings, in 3D; i.e., use chair/boat conformations rather than a flat hexagon). Explicitly show the position of the hydrogens on the ring-fusion carbons.

2. (4 points) The synthesis, as laid out in this paper, has three main steps, as illustrated below.

The first step (A \rightarrow B) is a Diels-Alder cycloaddition. Provide a detailed molecular orbital argument for this reaction. Illustrate your answers appropriately.
 a. Is this reaction photochemically or thermally allowed?
 b. Is this a suprafacial or antarafacial addition?

3. (2 points) The third stage in the synthesis (C \rightarrow D) involves a Cope rearrangement. Propose a mechanism for this reaction, and explain why the *cis*-decalin is the final product.
4. (2 points) The stereochemistry of the cis-decalin products was confirmed by NOE spectroscopy.
 a. What does NOE stand for?
 b. Consider compound D in the illustration above. Propose two possible NOE experiments to verify its structure, and explain what you expect to observe in those experiments.

5. (1 point) Attached is the 1H NMR spectrum of compound B. Assign as many of the peaks as you can.

Green Chemistry Question (2 points):
The second stage in the synthesis (B \rightarrow C) is an olefination. The authors use two different protocols to accomplish this transformation. One is a Wittig olefination (CH$_3$PPh$_3$Br, n-BuLi); the other utilizes Lombardo’s reagent (Zn, CH$_2$Br$_2$, TiCl$_4$). Compare and contrast these two methods from the perspective of green chemistry.